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Abstract
Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction
forces on extracellular matrix. Individual stress fibers are molecular bundles composed of parallel
actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-
end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements
of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely
how this mechanical behavior arises from this complex supramolecular arrangement of protein
components remains unclear. Here we show that computationally modeling a stress fiber as a multi-
modular tensegrity network can predict several key behaviors of stress fibers measured in living cells,
including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical
strain of a puncture wound within the fiber. The tensegrity model also can explain how they
simultaneously experience passive tension and generate active contraction forces; in contrast, a
tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may
provide a useful link between molecular and cellular scale mechanical behaviors, and represent a
new handle on multi-scale modeling of living materials.
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INTRODUCTION
Cultured cells exert traction on extracellular matrix (ECM) by assembling cytoskeletal stress
fiber (SF) bundles that extend tens of micrometers in length and insert into adhesion complexes
at the cell-ECM interface. SFs are linear bundles of parallel actin and myosin filaments that
also contain other actin-binding linker proteins, including tropomyosin, troponin, α-actinin and
caldesmon. These components self assemble into a periodic three dimensional (3D) lattice
reminiscent of the sarcomeric arrangement of thin and thick filaments in muscle (Langanger,
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1986). These multi-molecular assemblies have been shown to shorten and generate tension in
intact living cells (Kumar, 2006), membrane-permeabilized cells (Kreis, 1980; Sims, 1992),
and when isolated (Katoh, 1998). Cell-generated tensional forces drive changes in cell shape
and ECM remodeling, and contribute to control of cell growth and function, as well as tissue
patterning and mechanotransduction at the organ level (Ingber, 2003, 2006). Yet, little is known
about how the supramolecular architecture of the SF contributes to its mechanical behavior.

Studies with isolated SFs reveal that they can shorten by ~20% (Katoh, 1998) in response to
agonists that induce contraction in membrane-permeabilized cells (Sims, 1992). This
observation, combined with the finding that SFs shorten ~15% within 1 sec after being
dislodged from their ECM adhesions in lysed cells, has led to the conclusion that SFs are
passively strained by ~20% (Kumar, 2006). When intact SFs were physically severed with
femtosecond laser in living cells adherent to ECM, they retracted on the time scale of 15–20
sec with viscoelastic recoil dynamics, and most of this response could be inhibited by
interfering with myosin-based contractility (Kumar, 2006). These results indicate that the
tension experienced by the SF is primarily due to active tension generation; however, even
under these conditions, there was a small contribution of passive tension to SF retraction. Thus,
SFs are both passively distended through their ECM attachments and actively tensed by internal
myosin motors.

Other experiments show that SFs buckle in cells adherent to tensed flexible substrates when
tension is released and the substrate retracts rapidly (Costa, 2002). These findings suggest that
SFs experienced a non-uniform distribution of ~0–20% pre-extension, and that they can resist
compression even though they also actively contract and shorten. Moreover, SFs do not
significantly change their width when they contract against fixed adhesions (Kumar, 2006),
and hence some of their components must resist lateral compression exerted by neighboring
actomyosin filaments. It is therefore difficult to envision how SFs can be organized at the
molecular level to provide this unique combination of mechanical properties.

Individual SFs in living cells behave mechanically like tensed viscoelastic cables, and their
recoil dynamics can be captured by a macroscopic, continuum model that incorporates springs
and dashpots (Kumar, 2006). Yet, the reality is that each SF is organized as a discrete 3D
network composed of multiple interacting fibrillar components. Thus, there is a need for
physical models that incorporate the discrete nature of these molecular building components
and quantitatively relate component properties to network behavior.

Discrete network models based on tensegrity architecture have been used to successfully
predict the mechanical responses of whole cells (Ingber, 1993, 2003;Wang, 1993;Stamenovic,
1996,2000,2002;Coughlin, 1997;Volokh, 2000;Adasnwz, 2002;Sultan, 2004), the erythrocyte
membrane (Vera, 2005) and viruses (Sitharam, 2006); they also have been studied for use as
‘intelligent’ materials and structures for commercial applications (Shea, 2002;Sultan, 2003).
Here we describe a mechanical model of a SF based on tensegrity, and show that this model
effectively predicts a diverse range of SF behaviors observed in living cells, whereas a tensed
cable network model of similar architecture fails to predict all of these behaviors. These results
suggest that SFs may be effectively described as tensegrity structures even though the precise
molecular architectural details remain unknown.

METHOD AND MODEL
Tensegrity Model

Tensegrities are tensile network structures that require prestress in their members before
external load is applied to self-stabilize and resist shape distortion (10). When a tensegrity is
subjected to a mechanical load, or the prestress magnitudes in its members are varied such that
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the structure is out of equilibrium, it adjusts its configuration and the prestress in its members
to reach a new equilibrium state (Tibert, 2003). Tensegrities exhibit many common mechanical
behaviors regardless of their geometric arrangement (Sultan, 2003, 2004), and thus we modeled
the SF using a generic, planar tensegrity mast composed of multiple similar structural modules
(Fig. 1A) to simplify the mathematical analysis. To mimic the high slenderness ratio of the SF
(~100 based on width and length of 100 nm and 10 µm, respectively), the tensegrity model is
6 modules wide and 251 modules long with a slenderness ratio of 42 (Fig. 1A). Each module
is composed of 8 structural members organized in a prestressed tensegrity array in which
tension cables form a continuous web that is balanced by compression struts (Fig. 1B,C); in
each module, the relative dimensions of the structural element lengths, l1:l2:l3 (Fig. 1C) are
1:2:2. An additional member (number 9) is added to the modules located at the ends of the
tensegrity model to maintain the entire structure in a state of prestress (De Jager, 2006). Cables
are treated as viscoelastic Voight elements that support only tensile forces, whereas struts are
modeled as linearly elastic elements under compression (see Supplementary Information for
their constitutive characteristics).

At the reference (initial) state, tensile forces in the cables are balanced by the compression
forces in the struts and by the model’s fixed ends. A single actin filament has a Young’s
modulus E on the order of GPa and cross-sectional area A of ~10 nm2 (Gittes, 1993; Holmes,
1990; Kabsch, 1990; Kojima, 1994). While there are essentially no corresponding values
available for other SF proteins proteins (e.g., myosin, tropomysion, α-actinin), the linear
stiffness of the myosin-actin bridge and titin are ~2 pN/nm (Huxley, 1996) and 1–4 pN/nm
(Jeffrey, 2004), respectively, in muscle, whereas that of an isolated actin filament is ~44 pN/
nm (Gittes, 1993; Holmes, 1990; Kabsch, 1990; Kojima, 1994). Here we assume that the
average cross-sectional areas and lengths of the cross-linking proteins have the same magnitude
as those of actin filaments, and their cross-sectional stiffness therefore will be similarly one
order smaller. To generalize the model while maintaining this ratio, we simplified calculations
by assuming the sectional stiffness of the longitudinal cables (corresponding to F-actin) and
the cross-linking proteins to be 1 and 0.1 pN, respectively.

Prestress in the tensegrity model
Given the geometry and dimensions of the tensegrity SF model (Fig. 1), the self-stressed state
of the plane structure was determined by equilibrium analysis as 1: 2: 3: 4: 5: 6: 7: 8: 9 =
−0.3605: −0.3605: +0.3000: +0.3000: +0.5000: +0.5000: +0.2236: +0.2236: +0.2000 (−,
compression; +, tension). This represents the ratio of the internal stress of the various members
shown in Fig. 1B, and it indicates that the whole structure will remain in equilibrium and self-
stabilize itself under these internal stresses if the elements 1 to 9 all have internal forces
proportional to these ratios.

The prestress introduced into the planar, multimodular tensegrity array (Fig. 1A) is equilibrated
in part by the structure itself, and in part by reaction forces due to the end constraints. The
former contribution (‘self-stress’) keeps the structure in a stable state without end constraints,
which is consistent with the observation that SFs remain stable when they are isolated from
living cells (Katoh, 1998). The magnitude of the self-stress used in this study (−0.0295553,
−0.0295553, +0.0245915, +0.0245915, +0.0409859, +0.0409859, +0.0183294, +0.0183294
and +0.0163943 pN) is proportional to the self-stressed state values described above. We also
introduced an additional prestress of 0.2 pN into the longitudinal cables of the tensegrity SF
model because stress fibers are passively strained by about 20% in cells (Kumar, 2006). Thus,
in the presence of the self-equilibrated prestress, the tensegrity structure will remain in a state
of static equilibrium without end constraints. In contrast, with passive prestress, the tensegrity
structure will shorten if the end constraints are removed or relaxed (see Supplementary
Information for details).
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RESULTS
While the precise molecular scale architecture of the SF is not known, we took advantage of
the finding that tensegrity structures with different architectural configurations share common
mechanical behaviors (Sultan, 2003, 2004), and used a generic tensegrity design in our model
(Fig. 1). Our tensegrity SF model incorporates multiple linear filaments oriented in parallel
along its main axis, with many lateral structural links that would correspond to actin-associated
molecules (e.g., α-actinin, tropomyosin, troponin, caldesmon) that closely associate with actin
and myosin filaments along their length (Burridge, 1988; Byers, 1984). We then used this
simplified tensegrity model to explore whether it embodies features sufficient to predict
mechanical behaviors previously observed in SFs in living cells.

Viscoelastic retraction and splaying of stress fibers
Past studies have demonstrated that individual SFs labeled with yellow fluorescent protein
(YFP)-actin in living cells immediately retract when physically severed using a femtosecond
laser and their cut ends splay (Fig. 2A)(Kumar, 2006). The dynamics of retraction closely
match that exhibited by a tensed viscoelastic cable modeled using springs and dashpots (solid
line, Fig. 2B). To explore whether the planar multi-modular tensegrity SF model exhibits
similar viscoelastic retraction behavior, we modeled SF severing by deleting structural
elements that span the width of the model at its center (Fig. 2C), and then carried out a structural
transient analysis (ANSYS, 2004) that incorporates material damping of the cables. The
predicted retraction kinetics of the tensegrity model were very sensitive to the viscoelastic
characteristics of the cables, and matched experimentally observed kinetics for a material
damping coefficient of 3 sec/nm (Fig. 2B); this value was chosen for the rest of the simulations.
Reducing the passive prestress of the model SF from 0.2 to 0.1 and then to 0 pN resulted in a
progressive decrease in the retraction response (Fig. 2D) that also closely paralleled the
response exhibited by SFs in living cells when exposed to progressively more potent inhibitors
of actomyosin-based tension generation (Y27632 or ML7, respectively; Kumar, 2006).
Moreover, the cut ends of the tensegrity SF model also widened as the retraction distance
increased, whereas a tensed cable model with identical structure to the tensegrity model (i.e.,
except lacking compression-resistant struts) did not exhibit any splaying response under
identical loading conditions (Fig. 2C).

Stress fiber response to puncturing
When the laser was used to create a 300 nm wide puncture wound in a single living SF, the
circular hole progressively deformed along the main axis of the SF due to internal prestress,
resulting in formation of an elliptical defect (Fig. 3A, top) (Kumar, 2006). In our simulations,
when a hole was introduced into the tensegrity SF model, it also elongated formed into an
elliptical shape, but the SF narrowed along the lateral borders of the hole (not shown), whereas
these regions maintained relatively constant in width in living cells (Fig. 3A, top). This subtle
difference can be explained, however, if SFs have lateral constraints in addition to their end-
links to fixed focal adhesions (Costa, 2002), as demonstrated by electron microscopy (Marek,
1982). We therefore incorporated lateral guy wires connected to the sides of the SF model to
mimic these lateral flexible constraints in this and all subsequent modeling studies. Importantly,
this tethered SF model effectively predicted the shape changes in the puncture wound observed
in past experiments (Fig. 3A, bottom vs. top). Normalized values of simulated elongation
measured during a time course of 15 seconds also closely matched the dynamic structural
rearrangements observed in punctured SFs in living cells (Fig. 3B).

Stress fiber buckling
When tension is rapidly released in cells spread on stretched, flexible ECM substrates, the
resulting cell retraction causes SFs aligned along the shortening direction to buckle when
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compressed rapidly beyond their unloaded slack length (Fig. 4A) (Costa, 2002). The pattern
of buckling has a relatively short wavelength and varies along the length of the SF, which
provides additional support for the existence of lateral constraints. A nonlinear buckling
analysis was carried out to determine the tensegrity model’s response when one end was fixed
and the other was subjected to a uniformly distributed compression force. These simulations
revealed that the laterally tethered, multi-modular tensegrity SF also exhibited buckling
behavior and short-wave wavelengths similar to that observed in living cells (Fig. 4B). Again,
tethered tensile networks with the same architecture that lacked compression members failed
to exhibit this behavior.

Non-uniform contraction of stress fibers
When cells containing SFs are treated with contractile agonists, many stress fibers do not
contract uniformly along their lengths; instead, myosin activity preferentially concentrates at
their ends, causing them to contract peripherally and stretch at their center (Peterson, 2004).
SF contraction is driven by the relative motion of actin and myosin filaments along the main
axis of the fiber, which increases internal isometric tension within the entire fiber to the point
where the total applied stress overcomes the stiffness of the SF (or subportions of it), as well
as the resisting forces exerted by its anchoring points to basal focal adhesions. We therefore
modeled this contraction as resulting from increased prestress in the SF.

A tensegrity SF model initially in a stable state of uniform pre-extension and flexibly fixed at
its ends was divided into three parts: a central region surrounded by equally-sized peripheral
areas (Fig. 5A). Then the prestress of the longitudinal cables in the peripheral regions was
increased to 0.8 pN to disturb the equilibrium. The structure rearranged its internal elements
to find a new equilibrium state, resulting in contraction of the end portions of the tensegrity
model, and stretching of its center (Figs. 5A, B). Thus, the tensegrity model qualitatively
predicts the non-uniform contraction of SFs observed in living cells. In contrast, a cable net
without compression struts did not capture this non-uniform retraction (Fig. 5C), and increasing
the prestresses of all members resulted in uniform shortening of all elements in both models
(data not shown).

Contraction of the tensegrity model resulted in 38 and 19% decreases in length of the peripheral
regions and the whole SF, respectively (Fig. 5B), which are comparable to the magnitudes
observed in living cells (Peterson, 2004). In contrast, the average elongation of the central
region in the model was 18% (Fig. 5B), which is only one third of the reported elongation of
central sarcomeres in living SFs (Peterson, 2004). Interestingly, in our study, the whole
tensegrity SF model shortened when contraction was increased (Fig. 5B), indicating that some
prestress was released through the inward movement of the flexible fixed ends. In contrast,
this would not occur in cells where the ends are fixed to stable ECM adhesions, and thus,
increased elongation of the central region would result instead, as is observed experimentally.

Active contraction-dependent stress fiber shortening
SF shortening is due to actomyosin-based contraction; however, it is difficult to understand
how a structure that behaves like a tensed viscoelastic cable and buckles when compressed,
can also actively contract and shorten. To investigate this further, we treated the compression
struts in the tensegrity SF model as actuators whose lengths can be actively changed, as
previously explored in studies of intelligent tensegrity structures for commercial applications
(Shea, 2002; Sultan, 2003).

To computationally mimic the stress and boundary conditions of the isolated SF (Katoh,
1998), we first anchored both ends of the tensegrity to a substrate and introduced prestress
along its length (corresponding to its living state in a cell). Then, one of the ends was freed to
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release part of the prestress, resulting in passive retraction (as occurs during SF isolation).
Finally, the struts were shortened in the simulation, thus mimicking active SF contraction due
to actomyosin filament sliding. This caused all of the interconnected structural elements of the
tensegrity network to rearrange and change their positions relative to each other, which caused
the entire tensegrity model to shorten (Fig. 6A).

We quantified shortening of the tensegrity model by determining the ratio of the magnitude of
the retraction to the initial length, as previously done with isolated SFs (Katoh, 1998). The
stable configuration of the tensegrity SF before the struts were shortened was used as the
reference state; convergent results were obtained when struts shortened to 20% of their initial
length. In contrast to our studies on passive retraction, the width of the tensegrity SF model
decreased with this active contraction (Fig. 6A), again predicting behavior of living SFs
(Kumar, 2006). Due to the repeated multi-modular layout of the model, the normalized
contraction scaled almost linearly with the normalized shortening of the struts (Fig. 6B). The
corresponding contraction of the model only reached 10%, which was lower than the reported
value of 23% (Katoh, 1998); however, by increasing strut stiffness from 0.1 to 0.2 pN (i.e.,
one fifth the stiffness of the longitudinal cables), we obtained convergent contraction of more
than 30% with 40% strut shortening (Fig. 6B). This may indicate that cross-link elements in
SFs are stiffer than we assumed, at least in the case of this particular tensegrity configuration.

DISCUSSION
Mechanical tension generated via actomyosin filament sliding within cytoskeletal SFs
influences mammalian cell form and function, as well as tissue morphogenesis (Ingber,
2003, 2006). For this reason, the mechanical properties of SFs have been studied extensively
both in vitro and in situ (Katoh, 1998; Kreis, 1980; Kumar, 2006; Sims, 1992). Yet, little is
known about how the supramolecular architecture of the SF contributes to its wide range of
novel mechanical behaviors, and a theoretical model to explain SF mechanics is lacking. Here,
we developed and analyzed a generic, multi-modular tensegrity structure as a potential
mechanical model of the SF, without attempting to mimic its precise molecular geometry at
the nanoscale. Numerical simulations based on this multi-modular tensegrity effectively
reproduced multiple physical behaviors of SFs that have been previously measured in living
cells, including viscoelastic retraction and fiber splaying after severing, non-uniform
contraction, buckling, and elliptical strain of a puncture hole created with a fine laser.

Importantly, the viscoelastic retraction of a SF also can be simulated by a single prestressed
viscoelastic cable, but only the tensegrity model is capable of explaining all of these phenomena
exhibited by SFs within living cells. In addition, tensed cable net structures with similar
geometry, but lacking internal compression members, failed to mimic these behaviors. Without
fixed ends (or a resisting compression strut), no prestress can be introduced into a cable net.
As a result, if all of the elements of the SF are tensed, it will lose all prestress and become
unstable after isolation, and exhibit no ability to contract, which is inconsistent with
experimental observations (Katoh, 1998). In the tensegrity model, an increase in prestress also
results in a more stable structure, and this result is consistent with the observation that highly
phosphorylated myosin filaments, which are more contractile, are more rigid (Peterson,
2004). Thus, these observations suggest that the discrete network organization of the proteins
in SFs should be taken into account in the investigation of its mechanical properties, and that
at least a subset of these proteins may bear compression at the molecular scale in tensed SFs
in living cells.

Although the precise organization of the SF remains to be determined, we can speculate that
actin and myosin filaments function as tension cables, whereas some of the associated binding
proteins (e.g., α-actinin, tropomyosin, troponin, caldesmon) act as lateral struts, either alone
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or in combination with actomyosin filaments, when the SF is in its tensionally prestressed state.
These cross-linked filament bundles also resist compression and provide structural rigidity
when tension is released, and this may contribute to SF buckling produced by rapid retraction
of flexible substrates (Costa, 2002). Tropomyosin is a good candidate for a lateral strut as it
significantly increases the stiffness of actomyosin filaments (Kojima, 1994), and it is absent
from the more flexible hinge regions between sarcomeres and at the vertices of actin geodomes
(Lazarides, 1976). The compression members in our tensegrity SF model are similarly
distributed along the length of each repeating module, whereas they are relatively absent in the
hinge regions between adjacent modules.

Regardless of the precise architecture, the use of a multimodular tensegrity arrangement
provides a mechanism to maintain and control self-equilibrium within subregions of the SF
(e.g., center vs. periphery). It also provides similar functions at higher hierarchical levels,
including at level of the whole integrated SF, and the entire cell that contains multiple SFs that
pull isometrically against fixed ECM adhesions. If all the prestress in the SF were to equilibrate
itself, no force interactions between SFs and the focal adhesions would occur. Thus, given that
traction forces can be visualized at focal adhesions (Beningo, 2001), the prestress of each SF
does appear to be balanced in part by the ability of their fixed ends to bear these loads.

It was recently reported that the Young’s modulus of isolated SFs is ~1.45 MPa, which is some
three orders of magnitude smaller than previously reported elastic moduli for single actin
filaments (Deguchi, 2006). This difference may indicate that axial deformation of SFs is not
simply caused by axial elongation/contraction of F-actins. Other mechanisms, such as
tightening or relaxation of the mutual twisting of microfilament bundles, may also contribute
the axial deformation of SFs. While the relatively simple tensegrity model presented here does
not incorporate these structural details, more sophisticated multimodular tensegrity models
may be able to do so. A key challenge in developing these models will be transitioning from
planar 2D structures to more complex 3D geometries (along with more sophisticated algebric
formalisms) that will be needed to capture complex interfilament rearrangements.

A multimodular tensegrity model of icosahedral shells has been used to explain the movement
and self-assemblies of viral capsids (Sitharam, 2006), and viral self-assembly was also modeled
based on icosahedral tensegrity using computational algebra (Caspar, 1980). Although virus
assembly and SF contraction are two different physiological phenomena, their tensegrity
models share a common mathematical basis, i.e. a ‘form-finding’ process in which the structure
takes on a configuration with minimum potential energy under given constraints. In past
studies, simple (single module) tensegrity models were shown to predict static and dynamic
mechanical behaviors of living mammalian cells, including linear stiffening and instantaneous
softening, elastic and viscoelastic characteristics, and cell shape modulation (Ingber, 1993,
2003; Wang, 1993; Stamenovic, 1996, 2000, 2002; Coughlin, 1997; Volokh, 2000; Adasnwz,
2002; Sultan, 2004). However, the tensegrity module used in most of those studies only has 6
compression members and 24 tension cables, and it fails to take into account the multi-
modularity and structural hierarchies that are present in living cells (Ingber, 2003). For
example, one SF may be severed in a cell adherent to a rigid substrate without fully
compromising cell structure, whereas global structural rearrangements are observed
throughout the cytoskeleton if these cells are attached to flexible ECM substrates (Kumar,
2006). The actin filaments that permeate the cytoplasm also display multiple levels of
organization in that they can be organized as nets, geodesic dome-like structures, short bundles
and long SFs, and actin-binding proteins also can organize into modular structures (Puius,
1998). Thus, the multi-modular tensegrity model presented here may offer more utility for
simulating complex collective behaviors of these cellular components.

Luo et al. Page 7

J Biomech. Author manuscript; available in PMC 2009 August 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In summary, these studies suggest that the discrete network organization of the SF contributes
greatly to its mechanical properties, and tensegrity principles convey multiple physical
properties to these complex nanoscale structures in living cells. Although SFs are tensed, all
of their subcomponents do not experience tension, and some of these elements must bear
compressive forces at the molecular scale for the entire SF to exhibit its novel organic
properties. Given that tensegrity appears to be utilized at multiple size scales in the hierarchy
of life (Ingber, 2003, 2006); the multimodular tensegrity model described here may provide a
useful link between molecular and cellular scale mechanical behaviors, and provide a new
handle with which to develop novel multi-scale models of living materials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Structural configuration of the multi-modular, tensegrity, stress fiber model
A) Organization of a large section of the planar multi-modular tensegrity; the bold rectangle
at the upper left indicates the area which is shown in greater detail in B. B) Assembly of
individual modules into a self-equilibrium tensegrity structure. C) A single tensegrity module
from A and B, with elements labeled: elements 1 and 2 (bold lines) are struts; 3–8 are cables
(thin lines), and 9 (dashed line) is an additional cable for end modules. The modules connect
one by one in the x-direction by overlapping by a distance of l1, and they can be replicated in
the y-direction by shifting a distance of l2. Element 9 is only added to the distal ends of the
modules of the model to mimic fixed ends of the SF and thereby, maintain structural self-
equilibrium .
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Fig. 2. Stress fiber retraction after surgical incision
A) Fluorescence micrographs of a single YFP-labeled stress fiber (arrow) before (top) and 15
sec after (bottom) being surgically incised with a femtosecond laser(black arrow indicates site
of laser irradiation; reprinted from (Kumar, 2006) with permission). Note that the cut ends of
the SF (white arrowheads) physically retract and splay after cutting. B) Time course of SF
retraction predicted by the tensegrity model simulations with cable material damping
coefficients of 5 sec/nm, 3sec/nm and 1 sec/nm corresponding to time constants of 4.15 s
(dashed-dotted line), 2.61 s (dashed line) and 0.9 s( dotted line) respectively. As can be seen,
the simulation with a material damping coefficient of 3 sec/nm matches the experimental data
(black circles), and the predictions of a spring-dashpot model with a time constant of 2.66 s
(solid line, (Kumar, 2006)). C) Images showing results of simulations after the SF models are
severed at their center (top). The tensegrity model both retracts and exhibits splayed ends
(middle) like the living SF, whereas the purely tensed cable net model that lacks compression
struts retracts but fails to produce similar splaying behavior (bottom). D) Time course of SF
retraction predicted by the tensegrity model simulation for a passive prestress of 0.2pN (solid
line), 0.1pN (dashed line) or no passive prestress (dotted line) fit well to data obtained from
experiments in which SFs were incised in control cells (squares) or treated with the chemical
inhibitors of cytoskeletal tension generation, Y27632 (10 µM for 1 hr)(triangles) or ML7 (67
µM for 30 min) (circles), respectively; error bars represent mean ± SEM.
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Fig. 3. Response of a stress fiber to puncturing
A) Progressive elongation of a puncture hole (300 nm diameter) produced in a YFP-labeled
SF with a femtosecond laser (Kumar, 2006) over a period of 15 sec (left views), and similar
responses depicted in a simulation of the tensegrity SF model (right views). B) Graphic
depiction of the time course of hole elongation along the main axis of the SF showing that the
results of the tensegrity simulation (black line) fit well with previously reported experimental
results (black circles; 5). The elongation ratio is defined as the ratio of increased diameter along
the main axis to the initial diameter. C) A tensegrity SF model that also incorporates lateral
guy wire cables to model lateral filamentous constraints observed in past electron microscopic
studies effectively predicts the lateral thickening of the SF puncture wound, as observed in the
past experimental studies.
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Fig. 4. Short-wave pattern of stress fiber buckling
A) Buckling pattern of a SF in living cells produced by rapid release of tension within cells
adherent to stretched ECM substrates (reprinted with permission from (Costa, 2002). B)
Periodic short wavelength buckling pattern produced in the tensegrity SF model (inset shows
a portion of the buckled configuration at higher magnification).
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Fig. 5. Nonuniform contraction of a tensegrity stress fiber model
A) Configurations of the tensegrity SF model before (top) and after (bottom) contraction.
Enlarged views of the junctions between the peripheral and central regions of the SF pre- and
post-contraction are also shown (middle). B and C show percent change in length exhibited
by the whole tensegrity structure (black squares) versus the peripheral (black triangles) and
central regions (open circles) of the tensegrity model and a tensed cable net model with similar
configuration that lacked compression struts, respectively.
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Fig. 6. Contraction response of the tensegrity stress fiber model when struts are actively shortened
A) The configurations of the model before (left) and after (right) struts are actively shortened
showed that whole fiber contracts. B) Graph showing SF contraction ratio as a function of strut
shortening ratio for values of strut stiffness of 0.1 (triangle) or 0.2 (square); contraction and
strut shortening were normalized by the initial length of the model and strut, respectively.
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