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Abstract

The recognition that the progression of many tumors may be driven by specific
subpopulations of cells with stem/progenitor-like properties (tumor-initiating cells or
TICs, a.k.a. cancer stem cells) represents an important recent paradigm shift in cancer
biology and therapeutics. TICs in solid tissues are expected to interface with the extra-
cellular matrix (ECM), which can strongly influence cell behavior through a variety of
biochemical and biophysical mechanisms. Understanding ECM regulation of TIC behav-
ior is important for developing strategies to isolate, expand, and characterize TICs in a
laboratory setting and for understanding the roles ECM-based inputs may play in
disease progression and therapy. In this chapter, we discuss how the ECM regulates
TICs, starting with a brief overview of TIC biology, isolation, and characterization,
molecular mechanisms through which TICs may be regulated by ECM-based signals,
and the potential importance of these signals to TIC-driven tumor progression and
metastasis.
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1. INTRODUCTION

1.1. What are tumor-initiating cells?
It is an unfortunate reality in cancer that a single treatment strategy is rarely if

ever effective for all patients at all times. For example, a chemotherapeutic

regimen that initially produces tumor regression may fail later as a resistant

population of tumor cells emerges. Moreover, two patients with clinically

and histologically similar tumors may exhibit dramatically different

responses to a given chemotherapeutic regimen depending on the genomic

and proteomic profile of the patient and tumor. This immense heterogeneity

between and within tumors frustrates efforts to identify reliable molecular

and cellular targets and thus represents a key therapeutic barrier to

treatment.1–3While the nature and implications of this heterogeneity remain

incompletely understood, one important and recently appreciated manifes-

tation of this heterogeneity is the variable ability of cells within a given

tumor to propagate the tumor and seed new tumors. In particular, it is

becoming clear that for many tumors, a privileged and comparatively rare

subpopulation of cells is uniquely able to seed new tumors, whereas the vast

majority of tumor cells, presumably this rare subpopulation’s more differen-

tiated progeny, contribute to the tumor “bulk” (Fig. 10.1). In this sense, this

tumor-initiating subpopulation shares conceptual similarities with stem or

Figure 10.1 Tumor-initiating cells drive secondary tumor formation. Tumors are recog-
nized to consist of a highly heterogeneous population of cells, only some of which can
propagate and seed new tumors. This population of tumor-initiating cells (TICs) can dif-
fusely infiltrate tissue (in this example, brain parenchyma), leading to secondary tumor
formation. TICs also give rise to more differentiated progeny, which can both add to the
tumor “bulk” as well as contribute to more specialized stromal functions such as
angiogenesis.
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progenitor cells, in that these cells can both self-renew and differentiate to

yield more specialized progeny.

Some of the first evidence that a population of cancer cells may have

stem-like capabilities emerged in 1994 when Lapidot and colleagues found

that only the CD34+/CD38� subpopulation of leukemia cells generated

new tumors inmice.4 The authors also found that the frequency of immature

tumor cells was 1000 times less than mature tumor cells, suggesting that this

tumor-initiating population could be rare. These findings led to what the

field now recognizes as the cancer stem cell (CSC) hypothesis,5–7 which

states that a subpopulation of tumor-initiating cells (TICs) is more tumori-

genic than the rest of the tumor cell population and is capable of recapitu-

lating all components of the tumor (e.g. those involved in growth,

invasion, and metastasis) and may be highly resistant to therapeutics. TICs

have been identified in several cancers including breast cancer,8,9 prostate

cancer,10,11 lung cancer,12 and brain cancer.13,14 These cells now go bymany

names, including TICs, CSCs,6,15,16 and tumor-propagating cells.Whatever

the terminology, the common concept is that these cells share key functional

properties of stem cells and can initiate new tumors when introduced in small

numbers to tumor-free tissue. Most importantly, TICs can initiate and prop-

agate tumors that are histologically equivalent to their tumors of origin when

orthotopically implanted into immunocompromised animals.

1.2. Significance of TICs
In addition to lending fundamental new insight into the pathophysiology of

tumor progression, a deeper understanding of TIC biology may accelerate

the optimization and discovery of treatment regimens. There are at least two

ways in which deeper engagement of TICs could aid therapy: first, the

development of modalities that directly and specifically target TICs would

theoretically represent the most effective way to contain or eradicate a

tumor. For example, even after surgical resection of a primary tumor and

aggressive follow-up chemo- and/or radiation therapy, the tumor would

be expected to recur if a small number of TICs are left behind that could

seed new tumors, perpetuate angiogenesis, and invade surrounding tissue.

In principle, precise neutralization of TICs would effectively stop tumor ini-

tiation17. Second, TICs offer a route to personalized medicine, in that they

may be specifically isolated from a given patient’s tumor and used for

patient-specific molecular profiling, drug screening, and disease modeling.

Molecular sequencing technologies can be combined with tumor sampling

techniques to quantify tumor heterogeneity, trace cell population ancestry,

245Matrix Regulation of Tumor-Initiating Cells



and measure tumor-specific characteristics. For example, Sottoriva and col-

leagues18 developed a framework that could generate patient-specific pro-

files days after tissue collection and did not require xenotransplantation.

TIC characteristics considered in this model included a variety of factors

such as: fraction of TICs in the tumor, TIC symmetric division rate, meth-

ylation/demethylation rate per cell division, relative tumor age from malig-

nant transformation, and rate of apoptosis. The modeling results matched

those reported from xenotransplantation assays, supporting the clinical rel-

evance of this model and its potential for designing patient-specific

treatments.

The role of TICs in driving glioblastoma (GBM) has been an especially

active area of study. GBM is the most aggressive primary brain tumor and has

a median survival time of about 15 months, even with surgery and aggressive

chemo- and radiotherapy.19 A variety of laboratories have isolated subpop-

ulations of TICs from GBM tumors that can recapitulate characteristics of

the original tumor when transplanted into immunocompromisedmice, such

as migratory and infiltrative capabilities, nest-like formations, vascular

proliferation, nuclear pleomorphism with mitotic figures, and areas of

pseudo-palisading necrosis.5,6,20–24 The continuous cell lines that have been

extensively used as culture models of GBM (e.g. U87-MG) typically grow

in vivo by direct expansion and do not recapitulate the infiltrative character

and other key histologic features of the original tumor when transplanted

into mice.22,25 Thus, while these lines may adequately capture more differ-

entiated elements of the tumor that primarily participate in tissue infiltration,

TICs may serve as a more clinically relevant model for investigating cellular

aspects of the initiation and maintenance of GBM.

A number of studies have supported a role for TICs in tumor propaga-

tion26 and correlated TIC presence with clinical outcome.27,28 One study

used matched TIC and nonstem tumor cells and followed the single cells

from injection to tumor growth to show that TICs are more tumorigenic

than more differentiated tumor cells.26 The TICs proliferated faster than

the nonstem tumor cells and more fully recapitulated tumor heterogeneity.

Furthermore, analysis of secondary tumors contained a high population of

TICs and their progeny. A clinical study that compared expression of the

TICmarker CD133 (see below) and patient outcome using a panel of 95 gli-

omas found that high-grade glioma is strongly associated with high CD133

expression. This study also found that high frequency and clusters of CD133

positive cells—independent of tumor grade, extent of resection, and patient

age—could be prognostic factors for gliomas.27 Finally, another study found
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that low-grade gliomas have low expression of the neural stem cell marker

nestin, whereas more aggressive, high-grade gliomas have higher nestin

expression and produce shorter survival times. Xenotransplantation of

tumor-derived spheroids in mice gave rise to tumors in which nestin-

positive cells localized to the invasive front.28

2. IDENTIFICATION AND ISOLATION OF TICs

Manipulation ofTICs in culture presupposes an ability to reliably iden-

tify and isolate these cells. As a result, much effort has been devoted to the

search for sensitive and specific TIC markers that may be exploited in flow

cytometry, fluorescence-activated cell sorting, immunofluorescence, and

other applications. For identification and isolation ofGBMTICs,many stud-

ies have used neural stem cell surface markers such as CD133,29 CD15,30 and

A2B5.31 Similarly, the integrin subunit α6was shown to be expressed at high
levels in GBMTICs and to play a functional role in GBMTICmaintenance

and tumor formation capacity.32 Although several markers have been iden-

tified, use of any onemarker alone has proven to be somewhat unreliable. For

example, bothCD133+ andCD133� glioma cells can display stem-like prop-

erties and can generate secondary tumors in orthotopicmousemodels.33,34As

a result, while the field continues to search for sensitive and specificmolecular

markers, the gold standard for verification ofGBMTICs remains a functional

one—i.e., GBMTICs are defined by their ability to recapitulate the tumor of

origin when orthotopically implanted into immunocompromised mice.

A variety of in vitro functional screens have been developed to streamline

and augment in vivo implantation studies. For example, cell survival in neural

stem cell medium over several passages has been successfully used to select

GBM TICs from bulk tumor tissue.20 Another study exploited the inverse

correlation between proliferation rate (cell cycling speed) and tumorigenicity

to select forGBMTICs.5,35 Improved characterization ofTICproperties and

the development of new screening/isolation methodologies are critical for

further studies that seek to better understand tumor pathogenesis.

3. ROLE OF EXTRACELLULARMATRIX ANDMECHANICAL
SIGNALS IN REGULATING TIC FUNCTION

3.1. Extracellular matrix
Having described the identification and isolation of GBM TICs, we now

turn to a more detailed discussion of how the extracellular matrix (ECM)
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may regulate TIC behavior, with a special focus onGBM. In GBM, it is now

evident that TICs invade along perivascular spaces, which have a high con-

centration of ECM proteins such as collagen, fibronectin, and laminin.36

TICs sense and process these matrix-bound factors through adhesion recep-

tors such as integrins32,37 and CD44.38 For example, Lathia and colleagues

discovered that integrin α6, a laminin receptor, is necessary for TIC survival

and proliferation and directly correlates with TIC stem cell marker expres-

sion.32 Another recent study showed that integrin α3, which adheres to

laminin and fibronectin, is overexpressed in CD133-positive TICs. Sup-

pression of α3 slowed random migration and reduced transwell invasion

in glioma cell lines, which in turn depended on ERK1/2 phosphorylation.37

In addition to integrins, the adhesion receptor CD44 has been widely stud-

ied and characterized in multiple cancers.39 High expression of CD44 in

GBM TICs correlates with poor clinical prognosis and has been shown to

regulate TIC growth through Akt and other signals.38,40 These adhesion

receptor studies support an important role of ECM in TIC function and

tumorigenesis.

While these and other studies clearly demonstrate that ECM ligation can

trigger signals that modulate TIC behavior, it has also become clear over the

past two decades that mechanical cues encoded within the ECM can also

direct tumor invasion and growth. Features within the ECM such as matrix

geometry, density, and rigidity have been shown to regulate fundamental

cellular functions such as motility, proliferation, and gene expression.41–45

For example, endothelial cells and fibroblasts have higher cell spreading area

and motility on stiff matrices when compared to soft matrices.44,46 It has also

been shown that continuous GBM culture models have increased motility,

spreading area, and proliferation on stiff matrices.41 Interestingly, differences

in ECM rigidity can also direct the differentiation of adult stem cells, includ-

ing mesenchymal and neural stem cells.42,47 In the first and perhaps best-

known such study, Engler and colleagues showed that mesenchymal stem

cells preferentially undergo neurogenesis on soft ECMs ranging in stiffness

from 0.1 to 1 kPa, myogenesis on ECMs ranging from 8 to 17 kPa, and oste-

ogenesis on stiff ECMs ranging from 25 to 40 kPa.42 They also found that

inhibition of nonmuscle myosin II blocked differentiation, thus implicating

myosin-based contractile signaling in stiffness-dependent differentiation.

Later, Keung and colleagues showed that soft matrices (0.1–0.7 kPa)

directed neural differentiation of adult neural stem cells, whereas stiff matri-

ces (1.5–75 kPa) produced relative enrichment of astrocytic differentia-

tion.48 Mechanistic studies then revealed that the GTPases RhoA and
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Cdc42 were key to these effects, with suppression of these proteins rescuing

neuronal differentiation on stiff ECMs.

3.2. Propagation of TICs in ECM-adherent cultures
Since the ECM can instruct or select for specific cellular behaviors, it is

important to consider the role the ECM may play in culturing TICs in

the laboratory setting.49 For example, GBMTICs can be grown in adherent

cultures21 or as neurospheres in suspension50,51 (Fig. 10.2). While TICs

were long thought to retain their tumor-initiating capacity only when prop-

agated long term as neurospheres, more recent studies reveal that TICs may

be propagated as adherent cultures without loss of marker expression or

tumor-initiating capacity.21,22 Specifically, the authors of this study verified

the tumorigenicity of each adherent TIC line by injecting 100,000 TICs

intracranially into immunocompromised mice. After the mice were

sacrificed, the resulting tumors had infiltrated brain tissue and expressed

characteristic molecular markers (e.g. nestin) and displayed histopathological

hallmarks of GBM.Remarkably, limiting dilution studies revealed that some

TIC lines could form aggressive tumors upon transplantation of as few as 100

cells. In addition, adherent cells could be differentiated in culture into

marker-positive neuronal, oligodendrocytic, and astrocytic lineages. Some

important practical advantages of adherent culture over neurosphere culture

include more straightforward quantification of cell proliferation, improved

cellular homogeneity, and fewer gradients in oxygen, nutrients, and other

Figure 10.2 Comparison of adherent and neurosphere-based TIC cultures. Both
neurosphere and ECM-adherent cultures are widely used to propagate TICs. (A) An
acknowledged limitation of neurosphere culture is the possibility of gradients across
the sphere in oxygen, nutrients in the culture, and cell-secreted factors, as well as
uneven access to extracellular matrix. (B) Adherent culture has recently emerged as a
complementary paradigm to neurosphere culture, with the prospect of minimizing
these gradients while also offering greater scalability.
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soluble factors. Perhaps most importantly, the adherent culture paradigm

facilitates high-throughput screening; to illustrate this, the authors screened

their TIC lines with 450 drugs from the NIH Clinical Collection and found

that 23 of these drugs killed all TIC lines tested, including, unexpectedly,

seven agents that target monoamine signaling (e.g. serotonin-specific reup-

take inhibitors).

This is not to say that TICs in a small neurosphere (e.g. 150–200 μm)

cannot maintain stem-like properties; however as the neurosphere grows

larger, the percentage of stem-like cells rapidly decreases,49 which has been

ascribed to the increasingly uneven access to growth factors and oxygen as

the neurosphere grows and may be further complicated by increases in

juxtacrine and paracrine signaling. In adherent culture, all cells have effec-

tively equal access to soluble factors in the medium, and cells may be plated

at sufficiently low density as to minimize cell–cell contacts. In addition, the

increased exposure to laminin in the matrix can promote maintenance of

stem-like properties for adherent cells, which has been found to be an

important factor in identifying TICs.32 Although debate continues about

which culture method is best for a given application, both are used to suc-

cessfully propagate TICs in vitro.

3.3. Mechanisms of mechanotransduction
The finding that TIC behavior is regulated by ECM engagement and bio-

physical properties raises the question of whether the molecules that mediate

these effects may bear value as drug targets. For example, Cilengitide, an αv
integrin antagonist, inhibits GBM growth in preclinical models and is cur-

rently being evaluated in clinical trials.52 Recent studies with breast and

prostate cancer have used integrins to select for a tumor-initiating subpop-

ulation from the bulk tumor.8,11 As described earlier, the laminin receptor

integrin α6 is highly expressed in GBMTICs and is necessary for BTIC self-

renewal, proliferation, and tumor formation capacity.32 Since laminin is

abundant in the BTIC perivascular niche, this result is significant because

it suggests a mechanism through which this ECM protein can contribute

to maintenance of stemness.

Several actin binding proteins53,54 and transcription factors relevant to

integrin signaling and mechanotransduction55,56,57,58 have been identified

to have the capability of regulating GBM initiation, invasion, and

chemosensitivity. For example, the transcription factor ZEB1 is highly

expressed in GBM TICs and is known to be correlated with shorter survival
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and poor response to Temozolomide58(p1),59. ZEB1 is regulated by tyrosine

receptor type A, and increased expression leads to increased binding to

E-box regions of E-cadherin, resulting in highly motile cells and increased

tumor invasion. Downstream targets of ZEB1 have subsequently been

shown to include ROBO1, OLIG2, CD133, and MGMT. Knockdown

of ZEB1 sensitizes cells to temozolomide and decreases expression of stem

cell markers SOX2, OLIG2, and CD133.58(p1)

Another example is the influence of the actin binding protein, Girdin,

which is activated by the PI-3-Kinase/Akt pathway. Activation of the

Akt pathway can induce conversion from low-grade to high-grade glioma

and regulates angiogenesis, apoptosis, and invasion.60,61 Girdin is known to

regulate cell migration, cell polarity, and epithelial–mesenchymal transition,

and in GBMTICs contributes to self-renewal and tumorigenicity.54 Tumor

grade is positively correlated with Girdin expression, and knockdown of

Girdin decreases motility and invasion, neurosphere formation, tumorige-

nicity, and expression of nestin and CD133, and induces differentiation.

These studies collectively show that tumor initiation, invasion, and

chemoresistance are linked by pathways that are activated by biochemical

and potentially mechanical factors in the ECM.

Liu and colleagues recently tied together these concepts by showing that

the composition and mechanics of the ECM used to culture TICs can exert

powerful instructive and/or selective effects that can profoundly influence

subsequent tumorigenicity.62 The authors examined the formation of mel-

anoma TICs in 3D fibrin gels of varying stiffnesses and found that the softest

gel (0.09 kPa) generated the most and largest spheroids over a 5-day period

when compared to the stiff gel (1.05 kPa). Subcutaneous transplantation of

TICs propagated in the soft gel resulted in greater primary tumor formation

and lung metastasis compared to TICs propagated on hard plastic. Further-

more, spheroids grown in the soft gel exhibited increased expression of stem

cell markers CD133, nestin, and Bmi-1.

4. CONCLUSION

While it has long been recognized that tumors are highly heteroge-

neous, only recently has it been appreciated that this heterogeneity may

reflect a hierarchy of cellular entities in which a comparatively rare subpop-

ulation of TICs are capable of initiating and propagating the tumor. Over

the past decade, significant effort has been devoted to identifying and clar-

ifying the function of these TICs, which has allowed investigators to dissect
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specific contributions of individual factors to tumor progression. As

described in this review, the field is only beginning to understand the impor-

tance of the ECM and other solid-state components of the microenviron-

ment in regulating TIC behavior, and there is every reason to expect that

mechanical inputs will prove to be an important dimension of this regula-

tion. As our understanding of the role of ECM and mechanical signals to

TIC biology advances, there are several open questions to address, each

of which presents important opportunities to innovate. First, what are the

defining characteristics of the TIC physical microenvironment in vivo,

how is this different from the normal tissue microenvironment, and which

characteristics are most important to tumor initiation and propagation? Sec-

ond, if mechanical inputs are important to TIC function, how do the sig-

naling systems that process these inputs interface with more canonical

oncogenic signaling systems? Specifically, can aberrant mechanotransductive

signaling “tip the balance” between TIC quiescence and tumorigenesis, and

could this be leveraged in some way to identify new druggable targets?

Third, combining these concepts, is it possible to develop advanced

in vitro culture systems that enable one to investigate ECM and

mechanobiological regulation of TICs in a systematic, high-throughput,

and physiologically mimetic fashion? One envisions that advances in this last

area could dramatically accelerate both fundamental discovery and therapeu-

tic design, with standardized culture platforms serving as key enabling tech-

nologies for personalized molecular and chemotherapeutic screening.

Realizing this vision will require a highly multidisciplinary effort, including

input from biomaterials scientists, micro- and nanotechnologists, cell and

ECM biologists, and of course cancer biologists. The coming years and

decades are likely to be extremely exciting ones for this field, with advances

in basic science directly informing technology and therapeutics and thera-

peutic advances opening new avenues for scientific inquiry.
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