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SUMMARY

Dysfunctional progenitor and luminal cells with
acquired basal cell properties accumulate during
human mammary epithelial aging for reasons not un-
derstood. Multipotent progenitors from women aged
<30 years were exposed to a physiologically relevant
range of matrix elastic modulus (stiffness). Increased
stiffness causes a differentiation bias towards myoe-
pithelial cells while reducing production of luminal
cells and progenitor maintenance. Lineage represen-
tation in progenitors from women >55 years is unaf-
fected by physiological stiffness changes. Efficient
activation of Hippo pathway transducers YAP and
TAZ is required for the modulus-dependent myoepi-
thelial/basal bias in younger progenitors. In older
progenitors, YAP and TAZ are activated only when
stressed with extraphysiologically stiff matrices,
which bias differentiation towards luminal-like phe-
notypes. In vivo YAP is primarily active in myoepi-
thelia of younger breasts, but localization and activ-
ity increases in luminal cells with age. Thus, aging
phenotypes of mammary epithelia may arise partly
because alterations in Hippo pathway activation
impair microenvironment-directed differentiation and
lineage specificity.
INTRODUCTION

The aging process is often correlated with changes in stem cell

activity with consequences ranging from reduced regenerative

capacity to increased cancer incidence. Human hematopoietic

stem cells accumulate with age (Kuranda et al., 2011; Pang

et al., 2011) and exhibit a differentiation bias toward defective

myeloid lineages (Cho et al., 2008), making individuals more

prone to autoimmune problems and myeloid leukemias (Henry
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et al., 2011). In mice, the proportion of mitotic neural stem cells

increases with age, whereas numbers of adult-born neurons

decrease (Stoll et al., 2011). Human hippocampus shows pat-

terns of age-related changes similar to mice that may underlie

age-related cognitive decline (Knoth et al., 2010). Transit ampli-

fying cells, not stem cells, accumulate in epidermis with age and

delay wound healing (Charruyer et al., 2009). Mammary epithe-

lium is maintained by a hierarchy of lineage-biased and multi-

potent progenitor and stem cells (Nguyen et al., 2014; Rios

et al., 2014; Villadsen et al., 2007). In humanmammary gland, dif-

ferentiation-defective cKit-expressing multipotent progenitors

(MPPs) accumulate with age, and proportions of daughter myoe-

pithelial (MEP) and luminal epithelial (LEP) cells shift with age.We

hypothesized that these age-associated changes make aged

breast tissue susceptible to malignant progression (Garbe

et al., 2012). Accumulation of defective stem or progenitor cells

may be a common phenotype among aging tissues, and we

hypothesize that aged MPPs accumulate because they do not

correctly perceive microenvironmental differentiation cues.

The molecular composition of microenvironments impose

specific cell fate decisions in normal and immortal nonmalignant

mammary MPP (LaBarge et al., 2009). Cell culture substrata

tuned to elastic moduli that mimicked normal breast tissue

also biased the differentiation of an immortal nonmalignant

MPP cell line into LEP (Lui et al., 2012). Matrix stiffness is mech-

anistically important in breast cancer progression as well; rigid

breast tissue correlates with high breast cancer risk and drives

malignant phenotypes in breast cancer cell lines (Yu et al.,

2011). The physiological range of elastic modulus in breast likely

plays an instructive role in the differentiation of normal mammary

epithelial progenitors.

Membrane and cytoskeleton proteins sense mechanical

cues and trigger transduction cascades that relay information

throughout the cytoskeleton and to the nucleus. Responses

can include changes in morphology and gene expression (Vogel

and Sheetz, 2006). Sensing matrix elasticity occurs through cell-

cell and cell-extracellular matrix (ECM) interactions mediated by

adherens, integrins, vinculin, focal adhesion kinase (FAK), and

others (Beningo et al., 2001; Bershadsky et al., 2003; Tamada
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et al., 2004). The actinomyosin network includes RhoA, which

regulates the actin cytoskeleton in the formation of stress fibers

(SFs) and focal adhesions (FAs). Activation of ROCK1/ROCK2

causes increased activity of the motor protein myosin II by phos-

phorylation of the myosin light chain (MLC) and inactivation

of the MLC phosphatase (Ishizaki et al., 1997; Kimura et al.,

1996). YAP and TAZ are Hippo pathway transcriptional coactiva-

tors that are thought to interact with the Rho pathway to trans-

duce mechanical information about the microenvironment to

the nucleus (Halder et al., 2012). As stiffness increases, YAP/

TAZ relocates from cytoplasm into nucleus, where they generate

gene expression patterns that underlie cellular functions like pro-

liferation, migration, epithelial-to-mesenchymal transition, and

differentiation (Dupont et al., 2011; Kanai et al., 2000; Zhao

et al., 2007).

Differentiation of mesenchymal stem cells down neurogenic,

myogenic, or osteogenic pathways was directed by exposure

to a wide range of tissue-relevant elastic moduli, from 100 to

�40,000 Pa (Engler et al., 2006). In comparison, mammary

MPP differentiation should be responsive to a much narrower

range of modulus relevant to normal and malignant breast

(100�4,000 Pa; Paszek et al., 2005). The impact of aging on

modulus-directed differentiation is unknown. Addressing these

issues required a culture-based platform for functional analyses

of primary normal human mammary MPP frommany individuals.

Here, we used such an approach to demonstrate that differenti-

ation patterns of MPP from women aged <30 years cultured on

tunable 2D and 3D substrata were exquisitely responsive to a

physiologically relevant range of elastic modulus in a YAP/

TAZ-dependent manner, whereas MPP from women >55 years

were relatively unresponsive to changes in rigidity due to ineffi-

cient activation of the Hippo pathway transducers.

RESULTS

Aging Alters Modulus-Dependent Differentiation
To test whether microenvironment rigidity directed differentia-

tion in MPP, we enriched receptor tyrosine kinase cKit-express-

ing (cKit+) human mammary epithelial cells (HMECs) by flow

cytometry (fluorescence-activated cell sorting [FACS]) from

fourth passage primary prestasis HMEC (strains) derived from

five women aged <30 years and five from women >55 years

(Figure S1; Table S1). Prestasis HMEC strains are normal and

not treated with any immortalizing agents, have finite lifespans,

and we previously demonstrated that they retain molecular,

biochemical, and functional properties consistent with chrono-

logical aging in vivo (Garbe et al., 2012). The cKit+ MPP were

cultured for 48 hr on type 1 collagen-coated polyacrylamide

(PA) gels. The Young’s elastic modulus (E[Pa]scals) of the PA

gels was tuned from 200 Pa to 2,350 Pa. The lineage of each

daughter cell was confirmed by immunofluorescence (IF) of

intermediate filament proteins keratin (K)14 and K19, CD227

(sialomucin-1), and CD10 (Calla; Figures 1A, 1B, 1E, and 1F).

Computer image analysis identified the different lineages; LEP

are CD227+/CD10�/K14�/K19+, MEP are CD227�/CD10+/
K14+/K19�, and K14+K19+ expression is consistent with MPP

states (Villadsen et al., 2007). cKit+ MPP from women <30 years

generated proportionately more LEP on soft substrata, but gen-
C

eration of MEP increased with higher E (Figures 1C, 1C’, 1G, and

S2A). cKit+ MPP from women >55 years did not generate

different lineage proportions in response to changes in E (Figures

1D, 1D’, 1H, and S2B). Primary first passage cKit+ MPP from

three women <30 years, embedded in tunable 3D hydrogels

with some type 1 collagen for 7 days (Figure S3A; Ananthanar-

ayanan et al., 2011), gave rise to more LEP at 120 Pa versus

more MEP at 3,800 Pa (Figures 1K, 1M, 1M’, and S3B). In

contrast, cKit+ MPP from three women >55 years did not display

modulus-dependent differentiation patterns (Figures 1L, 1N,

1N’, and S3C). The proportion of K14+/K19+ MPP decreased

with elastic modulus on 2D PA gels and in 3D gels <30 years

HMEC (Figures S4A–S4C), but no change in proportions of

MPP was observed in >55 years HMEC (Figures S4B, S4D,

and S4F). These results suggested that differentiation was

modulus dependent in younger MPP and that this response

was lost with age.

To test if changes in lineage proportions were due to lineage-

biased proliferation, incorporation of 5-ethynyl-20-deoxyuridine
(EdU) into DNA was measured as a proxy for proliferation. All

lineages derived after 48 hr from cKit+ MPP on PA gels exhibited

similar proportions of EdU incorporation (EdU+), irrespective of

substrate rigidity or age (Figure 1I). In contrast, EdU incorpora-

tion in unsorted HMEC strains, which are primarily composed

of more mature LEP and MEP, revealed age- and lineage-

specific replicative behaviors. Proportions of EdU+ MEP from

<30 years HMEC significantly increased with greater E whereas

EdU+ LEP trended downward (Figure 1J). Unsorted HMEC

from women >55 years exhibited neither lineage- nor modulus-

dependent proliferation (Figure 1J), underscoring the lack of

mechanoresponse with age. Thus, changes in lineage propor-

tions exhibited by <30 years MPP after 48 hr were likely due to

modulus-dependent differentiation, and only after the lineages

matured in <30 years HMEC strains, did they show evidence of

modulus-dependent proliferation.

Mechanosensing Functions Were Unaltered by Age
To determine whether mechanosensing was age dependent,

F-actin SF formation and FA assembly activities were measured

in cKit+ MPP from three <30 years and three >55 years strains.

Irrespective of age, SF formation increased with greater E (Fig-

ure 2A). Homogeneity measurements were used to quantify for-

mation of the F-actin cables (Haralick et al., 1973; Pantic et al.,

2012); SF homogeneity was inversely proportional to E in both

age groups, which showed similar slopes (Figures 2B and 2C).

Progenitors fromboth age groupswere stained for pFAK and vin-

culin, which colocalize at FA.More FA assemblieswere observed

with increased E at the interfaces ofMPPand gels, and FA forma-

tion was not impaired with age (Figures 2D and 2E). FA homoge-

neity was inversely proportional to E with comparable slopes in

both age groups (Figures 2F and 2G). Thus, similar SF and FA

phenotypeswere observedboth in younger andolder cKit+MPP.

Extracellular signal-regulated kinase (ERK) is phosphorylated

in response to increased elastic modulus in some adherent cell

lines (Provenzano et al., 2009), and because it is a key effector

of serum responses, changes in its modulation could cause

pleiotropic cellular responses. Both young and old cKit+ MPP

exhibited a low level of ERK phosphorylation on 200 Pa PA
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Figure 1. Aging Alters Differentiation Patterns in Response to Matrix Stiffness

(A and B) Representative IF images of progenitors from young (240L; 19 years) and (B) an older (122L; 66 years) strains stained for K19 (green), K14 (red), and DAPI

(blue) after 48 hr of culture on PA gels with increasing elastic modulus (E[Pa]). Bars represent 100 mm.

(C and D) Histograms represent log2-transformed ratios of K14 to K19 protein expression in single cells on 2D PA gels with increasing stiffness; histograms are

heat mapped to indicate cells with the phenotypes of K14�/K19+ LEPs (green), K14+/K19+ progenitors (yellow), and K14+/K19� MEPs (red).

(C’ and D’) Corresponding linear regression plots of LEP and MEP proportions as a function of modulus are shown for (C’) women <30 years (LEP: p = 0.0429,

r2 = 0.2086; MEP: p = 0.0475, r2 = 0.2009, n = 5) and (D’) women >55 years (LEP: p = 0.4812, r2 = 0.0296; MEP: p = 0.5138, r2 = 0.0240, n = 5). Regressions are

fold change of lineage proportions compared to cKit+ on 200 Pa condition ± SEM.

(E and F) Representative IF images of progenitors from (E) young (240L; 19 years) and (F) older (122L; 66 years) strains stained for CD227 (green), CD10 (red), and

DAPI (blue) after 48 hr of culture on PA gels with increasing elastic modulus. Bars represent 20 mm.

(G and H) Linear regression of fold change of LEP (CD227+/CD10�) and MEP (CD227�/CD10+) proportions as function of elastic modulus in (G) women <30

years (LEP: p = 0.0080, r2 = 0.5219; MEP: p = 0.0198, r2 = 0.4340, n = 3) and (H) women >55 years (LEP: p = 0.4689, r2 = 0.0536; MEP: p = 0.1937, r2 = 0.5219,

n = 3). Linear regressions are of fold change of lineage proportions normal to 200 Pa condition ± SEM.

(I and J) Percentage of cells incorporating EdU as function of lineages and stiffness in (I) cKit+ HMEC and (J) unsorted HMEC (MEP from women <30 years linear

regression, p = 0.0270, r2 = 0.9467; LEP from women <30 years t test 200 Pa versus 2,350 Pa, p = 0.0153, n = 5). Data are means ± SEM.

(K and L) Representative IF of K19 (green), K14 (red), andDAPI (blue) of passage 1 cKit+ HMEC from a 19-year-old and a 65-year-oldwoman after 7 days of culture

encapsulated in 3D hyaluronic acid (HA) gels. Bars represent 20 mm.

(legend continued on next page)
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gels but increased up to 15-fold on 2,350 Pa PA gels (Figures 2H

and 2I). Differences in pERK were not significant between age

groups, and mitogen-activated protein kinase (MAPK) inhibitor

PD98059 prevented ERK phosphorylation. By these measures,

modulus-dependent activity in serum response was indepen-

dent of age.

If mechanosensing was unaffected by aging, then perturba-

tions of actinomyosin regulators that are known to alter FA

or SF formation should elicit parallel phenotypes in young and

old MPP. Independent of age, we observed that inhibitors of

ROCK1/ROCK2 (Y27632) and MLC kinase (ML-7) tended to

disrupt SF on 2,350 Pa substrata and showed little effect at

200 Pa, whereas the MLC phosphatase inhibitor calyculin A

(calA) caused SF formation at 200 Pa (Figures 3A and 3B). Pat-

terns of changes in F-actin homogeneity were parallel in both

age groups (Figures 3C and 3D). Y27632 and ML-7 disrupted

the FA assemblies on 2,350 Pa substrata, whereas calA pro-

moted FA assembly on 200 Pa substrata (Figures 3E and 3F)

and measurements of FA homogeneity showed parallel changes

in both age groups (Figures 3G and 3H). Mechanosensing of

substrata in the physiologically relevant range was age indepen-

dent, evaluated by these measures, and thus was unlikely to ac-

count for age-dependent differences in mechanically directed

differentiation.

Analysis of the effects of actinomyosin network modulation on

differentiation in three young and three old cKit+ MPP revealed

surprising age-dependent responses. FA and SF in cells treated

with Y27632 andML-7 on 2,350 Pa gels were similar to untreated

cells on 200 Pa gels, whereas calA increased the SF and FA as if

cells were on stiffer substrata. Thus, SF and FA phenotypes

were pharmacologically manipulated irrespective of the actual

substrate E. Younger cKit+ MPP treated with Y27632 or ML-7

significantly increased proportions of K19+ LEP compared to

DMSO-treated cells on 2,350 Pa gels. In contrast, older MPP

were unaffected by Y27632 or ML-7 treatment (Figure S5). Inter-

estingly, calA increased MEP generation from young MPP but

caused older MPP to give rise to significantly more LEP. No

changes in proportion were observed on 200 Pa gels, suggesting

that addition of calA was insufficient to trigger cell differentiation

on such a soft substrata. Older progenitors did not respond

to chemically decreased perception of stiffness, but they re-

sponded to artificially higher stiffness oppositely to that of young

progenitors, suggesting that age-dependent transcriptional pro-

grams were operative.

Aging Alters the Ability of YAP and TAZ to Transduce
Mechanical Information to the Nucleus
We next determined whether the mechanotransducive tran-

scription factors YAP and TAZ were involved in modulus-

dependent differentiation. IF staining of YAP and TAZ in cKit+

MPP from three HMEC strains <30 years exhibited increased

YAP/TAZ nuclear translocation as PA gel E increased from

200 to 2,350 Pa (Figures 4A and 4B). However, significant nu-
(M and N) Histograms represent log2-transformed ratios of K14 to K19 protein ex

cells with the phenotypes of K14�/K19+ LEPs (green), K14+/K19+ progenitors (

(M’ and N’) Fold changes of lineage proportions normal to 120 Pa condition (chi-

See also Figures S2, S3, and S4 and Table S2.

C

clear translocation of YAP/TAZ was not observed in older pro-

genitors in the same range (Figures 4C and 4D). The ability to

activate YAP/TAZ by changes in substrate E was age

dependent.

To determine the extent to which YAP/TAZ was unresponsive

to changes in E in older progenitors, we evaluated their activation

in response to extraphysiological stiffness. cKit+MPP from three

young and three old strains were cultured on type 1 collagen-

coated glass (>3 GigaPa) or 200 Pa gels. YAP/TAZ translocated

to the nucleus in young cKit+ MPP on glass (Figures 4A and 4B),

gave rise to fewer LEP (Figure 4E), and those LEP incorporated

less EdU on glass compared to 200 Pa gels (Figure 4F). In older

cKit+ MPP on glass, YAP/TAZ was nuclear (Figures 4C and 4D),

but cells gave rise to more LEP (Figure 4G), which incorporated

more EdU on glass than on 200 Pa gels (Figure 4H). Both calA

treatment and culture on extraphysiologically rigid substrata eli-

cited more LEP differentiation in older MPP, which was the

opposite of younger MPP. Thus, the Hippo pathway mechanor-

esponse in older progenitors was shifted to an extraphysiologi-

cal ‘‘trigger point’’.

To determine if YAP and TAZ were required for modulus-

dependent differentiation, both in the physiological and ex-

traphysiological ranges, cKit+ MPP were transfected with small

interfering RNAs (siRNAs), siYAP or siTAZ, which achieved

>70% knockdown of the respective mRNAs (Figure 4K). K14

and K19 proteins were measured by IF in each cell after 48 hr

on PA gels. Younger MPP harboring either siYAP or siTAZ were

unable to give rise to more MEP on 2,350 Pa PA gels and glass

substrata compared to controls (Figure 4I). In older MPP, siYAP

and siTAZhad no effect at 200Pa or 2,350Pa, but they prevented

the generation of more LEP on glass (Figure 4J). Thus, YAP and

TAZ were required for modulus-dependent differentiation in

progenitors irrespective of age.

YAP Localization Changes with Age In Vivo
That YAP and TAZ activity correlated with a bias toward MEP

in younger women prompted us to evaluate normal breast tis-

sue sections from reduction mammoplasty. K14, K19, and

YAP were evaluated by IF in sections from four women aged

34 years, 40 years, 50 years, and 54 years (Figure 5A). Multi-

ple fields from each section were analyzed to account for het-

erogeneity, and marker-based watershed cell segmentation

identified levels of YAP in nuclear and cytoplasmic domains

of MEP, LEP, and K14+/K19+ putative MPP. YAP staining

was localized mainly to the nuclei of MEP and MPP in the

34 years and 40 years glands (Figure 5B). In the 34 years

gland, we also observed a number of occurrences of K14+/

K19� cells that we assumed were LEP based on their luminal

location. Upon measuring the YAP signal intensity, it was

determined that the K14+ cells always correlated with higher

YAP expression (Figure 5C). In contrast to younger epithelia,

the 50 years and 54 years glands exhibited no inequality in

YAP localization between the different lineages (Figure 5B),
pression in single cells in 3D HA gels; histograms are heat mapped to indicate

yellow), and K14+/K19� MEPs (red).

square test women <30 years, p = 0.0146; women >55 years, p = 0.9113).
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Figure 2. Mechanosensing Apparatuses Function Independently of Age to Generate Actin Stress Fibers, Focal Adhesions, and ERK

Activation

(A) Representative IF images of F-actin (green) in cKit+ HMEC from a young strain (240L; 19 years) and an older strain (122L; 66 years) on PA gels of increasing

stiffness.

(B and C) Quantification of F-actin homogeneity using feature detection (B, p < 0.0001 and r2 = 0.8297, slope =�6.8053 10�5 ± 9.7493 10�6, n = 3; C, p < 0.001

and r2 = 0.6853, slope = �8.454 3 10�5 ± 1.811 3 10�5, n = 3). The slopes are not significantly different (p = 0.5699).

(D and E) Representative IF images of pFAK (red) and vinculin (green), which overlapped (yellow), from confocal microscopy are shown in cKit+ HMEC from (D) a

young strain (240L; 19 years) and (E) an older strain (122L; 66 years). Cells are shown at the substrata interface. Bars represent 20 mm.

(F and G) Quantification of vinculin and pFAK homogeneity (F, p < 0.001 and r2 = 0.7456, slope = �6.512 3 10�5 ± 1.203 3 10�5, n = 3; G, p < 0.001 and

r2 = 0.7581, slope = �6.356 3 10�5 ± 1.136 3 10�5, n = 3). The slopes are not significantly different (p = 0.8124). Data are means ± SEM.

(H and I) Ratio of pERK positive to ERK positive cell number in cKit+ HMEC from <30 years (n = 3) and >55 years (n = 3) strains on 200 Pa and 2,350 Pa.
and qualitatively, the even-appearing distribution of YAP in the

nuclei and cytoplasm of the LEP and MEP in older women

was reminiscent of YAP staining in >55 years HMEC (Fig-

ure 5C). YAP distribution in vivo was age dependent consis-

tent with our findings in primary cultures. Overall, the data

suggest that YAP activity is associated with MEP/basal phe-

notypes, even in the case of LEP in older women that acquire
1930 Cell Reports 7, 1926–1939, June 26, 2014 ª2014 The Authors
some traits of MEP. That impression was strengthened by our

analysis of breast cancer data from The Cancer Genome Atlas

data (Cancer Genome Atlas, 2012), which showed that YAP/

TAZ mRNA expression negatively correlated with levels of

LEP-related proteins and mRNAs and positively correlated

with markers of MEP and with YAP/TAZ target genes (Figures

S6A and S6B).



Figure 3. Perturbations of Actinomyosin Regulators Elicit Parallel Phenotypes in Progenitors from Young and Old Age Groups

(A and B) Representative IF images of F-actin with phalloidin (green) in cKit+ HMEC from (A) a young strain (240L; 19 years) and (B) an older strain (122L; 66 years).

(C and D) Quantification of F-actin homogeneity in (C) younger cKit+ (n = 3) and (D) older cKit+ (n = 3).

(E and F)Merged images of IF of pFAK (red) and vinculin (green), overlap is (yellow), in cKit+ HMEC from (E) the young strain and (F) the older strain. Bars represent

20 mm.

(G and H) Quantification of vinculin and pFAK homogeneity in (G) young cKit+ (n = 3) and (H) older cKit (n = 3).

See also Figure S5.
Levels of HippoPathwayComponentsChangedwithAge
To better understand why the trigger point for YAP/TAZ was

increased in older MPP, we determined whether Hippo pathway

components showed age-dependent expression patterns.

Mst1/Mst2, Lats2, and angiomotins (AMOT) phosphorylate

and sequester YAP/TAZ in the cytoplasm, which would prevent

YAP/TAZ from associating with DNA-binding cofactors TEAD1–
C

TEAD4 and transcribing target genes, like connective tissue

growth factor (CTGF) (Zhao et al., 2007, 2011). Analysis

with quantitative real-time PCR (qRT-PCR) revealed that, in

almost all cases, MST1/MST2, LATS2, AMOT, AMOTL1,

TEAD1–TEAD4, and CTGF were significantly correlated be-

tween women <30 years and women >55 years on 200 Pa

(Figure 6A; p = 0.0110; R = 0.7283) and 2,350 Pa (Figure 6B;
ell Reports 7, 1926–1939, June 26, 2014 ª2014 The Authors 1931



Figure 4. YAP and TAZ Activation Are Altered during Aging

(A and C) Representative IF images of TAZ, YAP (green), and DAPI (red) in cKit+ HMEC from (A) a young strain (240L; 19 years) and (C) an older strain (353P; 72

years). Bars represent 20 mm.

(B and D) Bar plots represent the distribution of YAP and TAZ (N, predominantly in the nucleus; N/C, equally distributed; C, predominantly in the cytoplasm) from

over 100 cells/strain in (B) younger (n = 3) and (D) older (n = 3) strains.

(E and G) K19+LEP and K14+MEP proportions derived from cKit+ HMEC from (E) younger (n = 5) and (G) older (n = 5) women. Data are fold change of cell

proportions compared to glass control ± SEM.

(F and H) Percentage of EdU+ LEP and MEP derived from cKit+ HMEC from (F) younger (n = 5) and (H) older (n = 5) women. Data are means ± SEM.

(I and J) K19+LEP and K14+MEP proportions derived from cKit+ HMEC from (I) younger and (J) older strains transfected with YAP or TAZ siRNA.

(K) Bar graphs of YAP and TAZ transcript knockdown following siRNA treatment and NSC scrambled control siRNA.

1932 Cell Reports 7, 1926–1939, June 26, 2014 ª2014 The Authors



Figure 5. YAP Localization Changes with Age In Vivo
(A) Representative IF images of K14 (red), K19 (green), YAP (white), and DAPI (blue) in human mammary breast sections from four women (aged 34 years, 40

years, 50 years, and 54 years). Bars represent 20 mm.

(B) Bar plots represent the distribution of YAP (N, predominantly in the nucleus; N/C, equally distributed; C, predominantly in the cytoplasm) from over 100 cells/

woman.

(C) YAP signal isolation from the immunofluorescence of K14 (red), K19 (green), YAP (white), andDAPI (blue) from the 34-year-old woman. Arrows identify luminal-

positioned K14+/K19low/� cells. The line graph shows mean pixel intensities from the lumen to the basal side of the structure in ten different examples of K14+

luminal cells.

See also Figure S6.
p = 0.0083; R = 0.7464) gels. On glass, the correlation was less

pronounced (Figure 6C; p = 0.0543; R = 0.5934). Because differ-

ences in Hippo gene expression were not strikingly age depen-

dent in physiological conditions, we examined protein levels of

MST1 and MST2. MST1 levels from three women <30 years

and three women >55 years were not significantly different (Fig-

ures 6D–6G). MST2 protein levels were 3-fold greater in MPP

from women >55 years compared to <30 years on 2,350 Pa

gels (Figure 6E). Thus, it is tempting to speculate that

age-dependent stoichiometry of Hippo pathway regulators
C

can lead to insensitivity to mechanical cues and activation of

YAP/TAZ.

Immortalization of Aged HMECs Restored
Responsiveness to Physiological Stiffness
Cellular responses tomechanical stimuli are often examinedwith

mesenchymal stem cells or immortal malignant and nonmalig-

nant cell lines. Whereas immortal cell lines tend to proliferate

more on stiffer substrata, we showed that normal <30 years

HMEC exhibited lineage-dependent responses and that
ell Reports 7, 1926–1939, June 26, 2014 ª2014 The Authors 1933



Figure 6. Age-Dependent Patterns of Hippo

Pathway Components

(A–C) Correlation of gene expression between

cKit+ HMEC from younger (n = 3) and older (n = 3)

strains after 24 hr on (A) 200 Pa, (B) 2,350 Pa PA

gels, and (C) >3 GPa substrate. Data are normal-

ized to GAPDH expression.

(D–F)Western blot densitometric analysis of MST1

and MST2 from cKit+ HMEC from younger (n = 3)

and older (n = 3) strains after 24 hr on (D) 200 Pa,

(E) 2,350 Pa PA gels, and (F) >3 GPa substrate.

Data are normalized to beta-actin protein content

and are mean ± SEM.

(G) Representative western blot with quantification

from a young (240L; 19 years) and an older strain

(122L; 66 years).
<55 years HMECwere nonresponsive to a physiological range of

E (Figure 1). To better understand the differences between the

normal and immortal nonmalignant states as a function of age,

we examined immortal nonmalignant cell lines derived from

two young and two old primary HMEC strains by targeted inac-

tivation of senescence barriers combined with unknown

genomic errors (Stampfer et al., 2013). The cell lines, 240LMY

(19 years), 184Fp16s (21 years), 122LMY (66 years), and

805Pp16s (91 years; Figure S7) were cultured atop PA gels tuned

from 200 to 2,350 Pa. cKit+ MPP from 240LMY and 184Fp16s

cell lines gave rise to more K14+ MEP than LEP on glass

compared to 200 Pa PA gels (Figure 7A). cKit+ MPP from

122LMY and 805Pp16s gave rise to more K19+ LEP than MEP

on glass compared to 200 Pa PA gels (Figure 7B). Independent

of age, all lineages of the immortal cell lines incorporated more

EdU as rigidity increased (Figures 7C–7F). YAP/TAZ nuclear

translocation was detected both in <30 years and >55 years
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cell lines on PA gels from 200 to

2,350 Pa (Figures 7G–7N). Thus, immor-

talization of older HMEC restored sensi-

tivity of the Hippo pathway to the physio-

logical stiffness range, albeit abnormally

because proliferation was no longer

lineage-dependent. The propensity of

immortal cell lines to generate more

MEP or LEP on extraphysiological sub-

strata was consistent with the chronolog-

ical age of the HMEC, suggesting that

the intrinsic age-related changes were

stable.

DISCUSSION

Matrix rigidity is a determinant of mam-

mary epithelial progenitor differentiation.

Exposure of progenitors to mechanically

tuned culture substrata revealed two

fundamental changes that arise in MPP

with age: (1) the mechanical trigger point

for activation of YAP/TAZ increases, and

(2) the YAP/TAZ-dependent differentia-
tion programs become distinct. Culture of MPP from <30-

year-old women in the most compliant 2D or 3D conditions

(100–200 Pa) enhanced LEP differentiation, whereas stiffer sub-

strata (2,300–3,800 Pa) favored MEP production. Older progen-

itors stochastically differentiated when exposed to a physiolog-

ically relevant elastic modulus range. Our results document the

role of YAP/TAZ transcription factors as drivers of modulus-

dependent differentiation in human mammary epithelial MPP

and suggest that YAP/TAZ activity favors differentiation into

MEP and other basal cell types. The basal cell types are not

exclusive toMEP andmay include LEP that express K14 or other

basal-associated markers, which we and others have observed

(Santagata et al., 2014). Older MPP needed to be stressed with

extraphysiologically stiff substrata to reveal their YAP/TAZ-

dependent bias toward LEP, which was consistent with our

observation in vivo that YAP tended to be located in LEP with

increased age. In younger women, YAP was in the nuclei of



Figure 7. Immortalization Restores Responsiveness to Physiological Stiffness in Older HMEC

(A and B) K19+LEP and K14+MEP proportions derived from immortalized cell lines from (A) younger (p = 0.0111; n = 2 individuals in triplicate) and (B) older

(p = 0.0056; n = 2 individuals in triplicate) women. Data are fold change of cell proportions compared to glass control ± SEM.

(C–F) Percentage of cells from immortalized cell lines derived from primary strains (240LMY at passage 25, 184Fp16s at passage 31, 122LMY at passage 19, and

805Pp16s at passage 29) incorporating EdU as a function of lineage, as defined by K14 and K19 expression, and stiffness.

(G–N) Bar plots represent the distribution of YAP and TAZ (N, predominantly in the nucleus; N/C, equally distributed; C, predominantly in the cytoplasm) from over

100 cells/lineage in immortalized cell lines. By comparison to the other cell lines, 184F derivatives are known to be mainly basal at the expense of LEP and

progenitor phenotypes.

See also Figure S7.
K14-expressing MEP, as well as the apical snouts of LEP. We

previously demonstrated that postmenopausal LEP tend to ex-

press some K14, as well as other markers associated with

MEP, and these new data suggest that age-dependent changes

in YAP/TAZ activity may underlie that phenotype of aging.
C

Radiographic density of breast tissue tends to decrease with

age suggesting that the mechanical environment is also altered

(Benz, 2008), but mechanical forces do not exclusively govern

YAP/TAZ regulation. Our experimental approach took advan-

tage of tuned mechanical perturbations of matrix to functionally
ell Reports 7, 1926–1939, June 26, 2014 ª2014 The Authors 1935



probe the HMEC, but more broadly these results revealed that

aging fundamentally alters Hippo pathway regulation. The role

of cell-cell contact in Hippo pathway regulation should be further

investigated in the context of chronological age. Both Wnt/beta-

catenin and NF2 are known to regulate YAP/TAZ in vivo (Cock-

burn et al., 2013; Imajo et al., 2012), and changes to both path-

ways have been implicated in different age-related cancers

(Evans et al., 2005; Seidler et al., 2004). Little is known about

whether YAP/TAZ play a role in other phenotypes of aging. Defi-

ciency in C. elegans yap-1 resulted in overall healthier aging

relative to controls (Iwasa et al., 2013). Disrupted Hippo

signaling in human and mouse ovarian follicles, which caused

YAP activation, promoted growth and oocyte maturation, which

are processes typically defective with age (Kawamura et al.,

2013). Indirect evidence suggests mesenchymal stem cells

also have dampened modulus-dependent differentiation re-

sponses with age. Bone is magnitudes stiffer than adipose

tissue and the osteogenic potential of mesenchymal stem cells

decreases and a bias toward adipogenesis increases with age

(Moerman et al., 2004), but the role of Hippo is unclear.

Accumulation of MPP with age may be attributed to inefficient

transduction of differentiation cues through the Hippo pathway.

At low cell density, decreased Lats2 activity dependent on

SF formation causes YAP/TAZ to translocate to the nucleus

(Wada et al., 2011), but <30 years and >55 years MPP formed

SF and FA comparably in response to changes in matrix stiff-

ness. Thus, we explored the potential for stoichiometric imbal-

ances in Hippo kinases with age that could dampen activation

of YAP/TAZ. In our hands, MST2 protein was higher in >55 years

MPP, suggestive of a damping mechanism. The Hippo pathway

is implicated in differentiation of different progenitors into

adipose, breast, muscle, and bone tissues, representing a

wide range of elastic modulus and predicting a marvelously

adaptable molecular rheostat. Each of these tissues differs in

their matrix composition as well as physical attributes, and there

is a reasonable expectation that combinations of ECM and

growth factors tune Hippo pathway activity. Further study of

microenvironment regulation of the Hippo pathway may identify

components of the activation rheostat and reveal the basis for its

age-related dampening.

Changes to the mechanical microenvironment affect multiple

cell types in breast. High breast stiffness and density are corre-

latedwith increased risk and cancer progression (Yu et al., 2011).

Increased stiffness also can induce adipocyte progenitors to

differentiate into fibroblasts, which can positively feedback to

further increase tissue stiffness (Chandler et al., 2012). MPP

from women <30 years responded to increasingly rigid matrices

by increased production of MEP, which are thought to be tumor

suppressive (Gudjonsson et al., 2002; Hu et al., 2008), and pro-

portionately decreased numbers of cells with the MPP pheno-

type, which are hypothesized to be breast cancer cells of origin

(Lim et al., 2009), suggestive of a protective mechanism from tu-

mor progression in younger epithelia. However, this putative pro-

tective mechanism falters with age, as demonstrated when aged

HMEC were essentially unresponsive to physiological changes

in matrix rigidity.

We speculate that the prevalence of luminal subtype breast

cancers in postmenopausal women may be the result of age-
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acquired epigenetic states. When older MPP were exposed to

extraphysiologically stiff substrata, they exhibited LEP-biased

differentiation—the exact opposite of the younger progenitors.

Age-dependent differentiation patterns were preserved in

immortal young and old HMEC, but the mechanotransducive

mechanism was notably rejuvenated in older immortal cells,

enabling them to proliferate increasingly as matrix modulus ap-

proached that of a tumor. YAP/TAZ were required for shifting

production in favor of MEP in younger and LEP in older MPP

on the stiffer surfaces. We hypothesize that the distinct differen-

tiation responses of younger and older MPP reflect age-depen-

dent epigenetic landscapes. Indeed, normal HMEC exhibit

age-dependent gene expression patterns consistent with the

concept of age-dependent epigenetic states (Garbe et al.,

2012). A precedent was set in hematopoietic stem cells where

DNA and histone modifications were shown to correlate with

age-related functional phenotypes (Chambers et al., 2007). Stro-

mal feedback loops can result in formation of stiffened regions; if

such regions already contained an accumulation of aged pro-

genitor cells carrying errors predisposing them to immortality,

they could create an environment that promotes development

of age-related luminal subtype breast tumors.

Finally, it is important to be able to empirically examine the

cell and molecular consequences of aging in normal human

epithelia because most carcinomas are age-related. Wild-type

mice are typically resistant to cancers, murine models of breast

cancer do not completely model the steps of cancer progres-

sion in HMEC (Stampfer et al., 2013), and most inbred strains

exhibit tumor incidence curves consistent with sporadic tumor

genesis; thus, mice may not be an optimal model for studying

the genesis of age-related breast cancers. Here, we present

an approach for interrogation of human aging that takes advan-

tage of cultured strains of normal HMEC and engineered micro-

environments to perform cell-based molecular and functional

studies, which are validated by comparison with breast tissues.

Most studies that have drawn conclusions from breast cancer

cell lines or mouse studies have used three methods to estab-

lish relevance of their results to human in vivo: an experiment

with primary HMEC that recapitulates the main findings, exam-

ination of tissue sections for in vivo evidence that correlates with

the findings, and correlation with large gene/protein expression

data sets derived from patient samples. We have followed these

three conventions. We find it striking that many of the molecular

and biochemical phenotypes of aging persist in our early

passage strains in spite of the imperfect microenvironment,

which reinforces our impression that age-associated epigenetic

changes are stabilizing those phenotypes. However, limitations

and challenges are intrinsic to every experimental system. Early

pregnancy has a detectable protective effect against breast

cancer, and the balance of epithelial lineages and gene expres-

sion patterns in mice and humans are affected by parity (Choud-

hury et al., 2013). Our current strain collection is not annotated

for parity information, and focused studies should be conducted

to determine how parity modifies the aging phenotype in breast.

There is an impressive level of heterogeneity among human

mammary epithelia as was beautifully shown by detailed exam-

inations of luminal lineages (Santagata et al., 2014; Shehata

et al., 2012). Our method for establishing primary strains



encompasses a significant amount of the total heterogeneity in

given surgical specimen, and low stress culture conditions

maintain MPP activity in early passages (Labarge et al., 2013).

We also addressed this issue of heterogeneity and potential

for interindividual variation by using strains established from

17 different women, with any given experiment comparing thou-

sands of independent measurements from groups comprised of

three to five strains each. We find repeatedly that the functional,

molecular, and biochemical phenotypes often differ between

the pre- and postmenopausal age groups, underscoring the

importance of chronological age as an experimental variable.

EXPERIMENTAL PROCEDURES

Cell Culture

All cell culturewas inM87Amediumwith cholera toxin at 0.5 ng/ml andoxytocin

(X) at 0.1 nM (Bachem; Garbe et al., 2009). Primary HMEC strains were gener-

ated and maintained as described (Labarge et al., 2013); all tissues were ob-

tained with proper oversight from the Lawrence Berkeley National Laboratory

institutional review board. Modulus-dependent effects were measured in sub-

confluent cultures. Table S1 shows the strains used for each experiment.

Reagents

Cells were treated with Y27632 (10 mM; Sigma), ML-7 (10mM; Sigma), or

calyculin A (2 nM; Calbiochem) 2 hr after adhesion. Cells were treated

with PD98059 (50 mM; Cell Signaling Technology) 24 hr after adhesion. Cells

were transfected with YAPsi, WWTR1 (TAZsi), or nontargeting control siRNA

SMARTpools (Dharmacon/Thermo) plus a fluorescein isothiocyanate (FITC)

label with DharmaFECT reagent according to manufacturer 24 hr prior to

FACS enrichment.

Flow Cytometry

Anti-CD227-FITC (BD;cloneHMPV;1:50), anti-CD10-phycoerythrin (BioLegend;

clone HI10a; 1:100), and anti-CD117-antigen-presenting cell (BioLegend; clone

104D2; 1:50) were added to cells in media for 25 min on ice, washed in PBS,

and sorted with a FACSVantage DIVA (Becton Dickinson).

PA Gels

PA gels were made on circular, 12 mm coverslips etched in 0.1 M NaOH

following an adapted protocol (Tse and Engler, 2010). Sulfo-SANPAH

(0.4 mM) was activated by UV light, and then collagen was added

(0.1 mg/ml in 50 mM HEPES; Sigma). ddH2O washed gels were placed in

polyHema-treated (0.133 ml at 12 mg/ml in 95% EtOH) 24-well plates. Gel

modulus was confirmed with atomic force microscopy.

Immunofluorescence

HMEC were fixed in methanol:acetone (1:1) at�20�C for 15 min, blocked with

PBS, 5% normal goat serum, 0.1% Triton X-100, and incubated with anti-K14

(1:1,000; Covance; polyclonal rabbit) and anti-K19 (1:20; Developmental

Studies Hybridoma Bank; clone Troma-III) overnight at 4�C and then visualized

with fluorescent secondary antibodies (Invitrogen) incubated for 2 hr at room

temperature. EdU was added to culture media 4 hr prior to fixing cells and

was imaged with Alexa 647 click reagents (Invitrogen). Paraformaldehyde

(2.5%) was used for fixation for phalloidin (1:50; Invitrogen), anti-pFAK

(1:1,000; Invitrogen; monoclonal antibody [mAb]), anti-vinculin (1:400; Sigma;

mAb), anti-YAP (1:100; Santa Cruz Biotechnology; SC-15407), anti-TAZ

(1:200; CST; polyclonal), phospho-p44/42 MAPK (Erk1/Erk2; 1:100; CST

mAb), and p44/42 MAPK (Erk1/Erk2; 1:100; CST mAb). Paraformaldehyde

(1.6%) was used for fixation for anti-CD227 (1:200; Abcam; polyclonal) and

anti-CD10 (1:100; BD Biosciences; clone HI10a). Paraffin-embedded sections

were deparaffinized and antigen retrieved (Vector Laboratories) and stained

with primary antibodies to K14 (1:1,000; Covance; PRB-155P; visualized

with A647 Zenon probes from Invitrogen), K19 (1:100; Abcam; AAH07628)

and YAP (1:100; Santa Cruz; SC-15407). Cells were imaged with LSM710

confocal microscope (Carl Zeiss). Image analyses were conducted using a
C

modified watershed method in Matlab software (Mathworks); see Supple-

mental Information for detailed code.

Real-Time PCR

Total RNA was purified with Trizol (Invitrogen) followed by RNeasy prep

(QIAGEN). cDNA was synthesized with SuperScript III RT (Invitrogen). Tran-

scripts levels were measured by qRT-PCR using iTaq SYBR Green Supermix

(BioRad) and LightCycler480 (Roche). Primer sequences are in the Supple-

mental Information.

Generation of Immortal Cell Lines

Finite lifespan HMEC from specimens 184, 240L, 122L, and 805P were grown

in M87A. Retroviral vectors: the p16 small hairpin RNA was in MSCV vector,

and c-Myc was in pBabe–hygro (BH2) or LXSN vector. Retroviral stocks

were generated from supernatants collected in M87A medium. Strains 240L,

122L, and 805P at passage 3 or and 184 at passage 4 were transduced with

MSCV-p16sh or MSCV control and selected with puromycin. At the next pas-

sage, after puromycin selection, the p16sh-transduced cells were transduced

with c-Myc pBabe–hygro (c-myc LXSN for 184) and selected with hygromycin.

Vector-only control prestasis cells entered stasis at passages 12–15, whereas

the immortalized lines continued to grow.

Western Blot

The following antibodies were used: MST1 CST no. 3682 rabbit 1:1,000, MST2

CST no. 3952 rabbit 1:1,000, beta-actin Abcam no. 8227 rabbit 1:500, and

visualized with goat anti-rabbit immunoglobulin G (H + L)-horseradish peroxi-

dase conjugate no. 170-6515 1:10,000.

TCGA Database

All data were obtained from the The Cancer Genome Atlas (TCGA) breast can-

cer online portal (https://tcga-data.nci.nih.gov/docs/publications/brca_2012/;

Cancer Genome Atlas, 2012). The following files were used: for microarray

gene expression data: ‘‘BRCA.exp.547.med.txt’’ and for reverse-phase pro-

tein array expression data: ‘‘rppaData-403Samp-171Ab-Trimmed.txt.’’

Statistical Analysis

Graphpad Prism 5.0 for PC and Matlab were used for all statistical analysis.

Standard linear regression was used. Grouped analyses were performed

with Bonferroni’s test for multiple comparisons. To compare two population

distributions, chi-square and t tests were performed. Significance was estab-

lished when *p < 0.05, **p < 0.01, and ***p < 0.001.
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