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Genomics

CD44-Mediated Adhesion to Hyaluronic Acid Contributes
to Mechanosensing and Invasive Motility

Yushan Kim and Sanjay Kumar

Abstract
The high-molecular-weight glycosaminoglycan, hyaluronic acid (HA), makes up a significant portion of the brain

extracellular matrix. Glioblastoma multiforme (GBM), a highly invasive brain tumor, is associated with aberrant HA
secretion, tissue stiffening, and overexpression of the HA receptor CD44. Here, transcriptomic analysis, engineered
materials, and measurements of adhesion, migration, and invasion were used to investigate how HA/CD44 ligation
contributes to the mechanosensing and invasive motility of GBM tumor cells, both intrinsically and in the context of
Arg-Gly-Asp (RGD) peptide/integrin adhesion. Analysis of transcriptomic data from The Cancer Genome Atlas
reveals upregulation of transcripts associated with HA/CD44 adhesion. CD44 suppression in culture reduces cell
adhesion toHA on short time scales (0.5-hour postincubation) even if RGD is present, whereas maximal adhesion on
longer time scales (3 hours) requires both CD44 and integrins. Moreover, time-lapse imaging demonstrates that cell
adhesive structures formed during migration on bare HA matrices are more short lived than cellular protrusions
formed on surfaces containing RGD. Interestingly, adhesion and migration speed were dependent on HA hydrogel
stiffness, implying that CD44-based signaling is intrinsically mechanosensitive. Finally, CD44 expression paired with
an HA-rich microenvironment maximized three-dimensional invasion, whereas CD44 suppression or abundant
integrin-based adhesion limited it. These findings demonstrate that CD44 transduces HA-based stiffness cues,
temporally precedes integrin-based adhesion maturation, and facilitates invasion.

Implications: This study reveals that the CD44 receptor, which is commonly overexpressed in GBM tumors, is
critical for cell adhesion, invasion, and mechanosensing of an HA-based matrix.Mol Cancer Res; 12(10); 1416–29.
�2014 AACR.

Introduction
The prognosis of glioblastoma multiforme (GBM), a

highly invasive and rapidly lethal brain tumor, has improved
only incrementally in the past several decades. This dire
prognosis is in large part attributed to the aggressively invasive
nature of glioma cells, which, in turn, has fueled interest in
exploring new strategies for slowing invasion, including
identifying and limiting interactions between tumor cells
andproinvasive components of the tumor extracellularmatrix
(ECM; ref. 1). In addition to invading brain tissue along
vascular structures, GBM tumors are characterized by a
diffuse single-cell invasion pattern of glioma cells into brain
parenchyma (2, 3), which contains ECM characteristically
devoid of the fibrillar adhesive proteins found in connective
tissue, but rich in hyaluronic acid (HA; refs. 3 and 4). This

chemical signature of brain ECM is significant because an
emerging body of literature has revealed that the HA/CD44
interaction can act as a powerful regulator of cell proliferation,
survival, and antiapoptotic pathways (5–7). In the ECM of
gliomas, HA is much more abundant than in normal brain
(8), suggesting that its oversecretion may contribute to the
aggressive invasion pattern of glioma cells in brain parenchy-
ma. Finally, CD44 expression directly contributes to the
survival of glioma stem-like cells hypothesized to be the driver
of tumor recurrence (9).
Although changes in ECMbiochemistry are key features of

GBM, we and others have shown that ECM biophysical
properties also strongly influence glioma cell invasion in an
in vitro setting (10, 11). This is consistent with the obser-
vation that GBM tumors are stiffer than normal brain tissue,
to the extent that ultrasound imaging can be used to delineate
tumor margins intraoperatively (12, 13). This has led to the
hypothesis that part of the aggressive nature of GBM may
be regulated by biophysical interactions between glioma cells
and the brain ECM. Matrix stiffness cues encoded in the
ECM are traditionally thought to be transduced by integrins,
and this signaling is altered in cells derived from a variety of
cancer cell types. Although the importance of integrin-medi-
ated signaling in these scenarios has been well characterized,
the significance of non-integrin ECM adhesion receptors to
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tumor cell mechanobiology remains largely unexplored. The
abundant presence of HA in brain ECM and the established
role of CD44-mediated signaling in tumor progression beg
the question of how HA/CD44 interactions contribute to
glioma adhesion and invasion in ECMs composed of HA,
integrin-adhesive domains, or both.
Despite the acknowledged association of GBM with

altered HA deposition, CD44-based signaling, and tissue
mechanics, little is known about the causal relationships
between these phenomena in the pathogenesis of the disease,
particularly with respect to tumor invasion. We therefore
sought to investigate these connections by combining tran-
scriptomic analysis of human GBM tumors to explore
correlations in the expression of HA/CD44-related genes,
engineered hydrogel materials to recapitulate the compliant,
HA-rich nature of brain ECM (14–16), and biophysical
studies of tumor cell adhesion, migration, and invasion. We
find that GBM tumors preferentially express certain
HA/CD44-related genes relative to normal brain tissue and
that HA/CD44 interactions strongly contribute to tumor
cell adhesion, mechanosensing, and invasive motility. These
effects are both experimentally separable and functionally
distinct from contributions of integrin-based adhesion.

Materials and Methods
The Cancer Genome Atlas gene expression analysis
Data from the publicly available data browser were que-

ried for expression of CD44 and related genes. The cBio-
Portal analysis tool from Memorial Sloan–Kettering was
used to retrieve mRNA expression data for genes of interest
from all available GBM tumor samples. Correlations with
CD44 expression were analyzed by Pearson product–
moment correlation coefficient.

HA hydrogel synthesis
HA hydrogels were synthesized as previously described

(14, 17). Briefly, methacrylic anhydride was used to functio-
nalize HAwith methacrylate groups (Me-HA). The degree of
methacrylation was characterized by 1H NMR as detailed
previously (14), and the Me-HA used for the experiments
discussed here was characterized to have 50% of disaccharides
methacrylated.Me-HA could then be conjugated viaMichael
Addition reactions with molecules containing free thiol
groups. In some cases, Me-HA was conjugated with the
cysteine-containing RGD peptide (Ac-GCGYGRGDSPG-
NH2, Anaspec) to add integrin-adhesive functionality at a
concentration of 0.5 mmol/L. Finally, hydrogels were formed
by crosslinking 5 wt% Me-HA in DMEM (Invitrogen) with
varying concentrations of the bifunctional thiol dithiothreitol
(DTT, Sigma-Aldrich), ranging from 2.79 mmol/L (to yield
0.15 kPa) to 22.3 mmol/L (to yield 6.9 kPa). After 1 hour
crosslinking time, the hydrogels were rinsed thoroughly with
PBS before cell seeding.

Rheological measurements
The shear modulus of various hydrogel formulations

was measured using oscillatory rheometry as described

previously (14). Briefly, hydrogels were first crosslinked by
incubation for 1 hour in a humidified 37�C chamber.
Rheological testing consisted of frequency sweeps ranging
from 100 to 0.1 Hz at 0.5% amplitude, also in a humidified
37�C chamber. Shear modulus was reported as the storage
modulus at an oscillation frequency of 0.1 Hz.

Functionalization of HA hydrogels with full-length
proteins
After crosslinking, some HA hydrogels were functiona-

lized with adhesive proteins in a method adapted from a
previous study (18). Because the hydrogels are resistant to
passive protein adsorption, crosslinked hydrogels were con-
jugated with poly-L-lysine by carbodiimide chemistry using
0.5MEDC (Pierce) and 0.5MNHS (Sigma) in 0.1MMES
buffer at pH 5.8. After rinsing, a solution of 0.5% poly-L-
lysine (Sigma) in PBS was added for 1.5 hours, then a
0.1 mg/mL solution of human plasma fibronectin (Milli-
pore) or rat laminin (Life Technologies) was adsorbed for
1 hour at room temperature. Before cell seeding, the hydro-
gels were rinsed with PBS.

Cell culture
U373-MG and U87-MG human glioblastoma cells were

obtained from the University of California, Berkeley Tissue
Culture Facility, which sources its cultures directly from the
ATCC. We note that ATCC U373-MG cells have been
discovered to share common origins with SNB-19 and
U251-MG cell lines, although these 3 lines seem to have
since evolved to exhibit distinct karyotypes and drug sen-
sitivities (19). Whatever their origins, all of these lines are
understood to be fully distinct from U87-MG cells and thus
serve as an appropriate culture model for comparison. Cells
were cultured as previously described (10) in DMEM
(Invitrogen) supplemented with 10% calf serum (JR Scien-
tific), 1% penicillin–streptomycin, MEM nonessential ami-
no acids, and sodium pyruvate (Invitrogen). Accutase (Inno-
vative Cell Technologies, Inc.) was used to harvest cell
cultures from tissue culture polystyrene.

Lentiviral shRNA transfection
To createCD44knockdowncells, 2 distinctCD44-specific

shRNA constructs (V2LHS_111682 and V2LHS_111684;
Thermo Scientific) were screened in addition to a nontarget-
ing scramble sequence (plasmid 1864; Addgene deposited by
D. Sabatini) as a negative control. Viral particles were pack-
aged using human embryonic kidney 293T cells, then trans-
fected into U373-MG human glioblastoma cells with a
multiplicity of infection of 1 IU/cell. Cells were selected using
1 mg/mL puromycin, and expression of the GFP-containing
vectors was confirmed using flow cytometry.

Western blots
The efficiency of CD44 knockdown was confirmed using

Western blots. RIPA buffer with protease and phosphatase
inhibitors were used to lyse cells. Lysates were heated to 70�C,
run through a 4% to 12% bis-tris gel, and then blotted onto
a PVDF membrane. Membranes were probed with rat
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anti-pan-CD44 primary antibody (Hermes-1; Pierce) or goat
anti-RHAMM primary antibody (E-19; Santa Cruz
Biotechnology), and mouse anti-GAPDH (Sigma-Aldrich).
HRP-conjugated secondary antibodies against rat, mouse
(Invitrogen), or goat (Zymed), and SuperSignal West
Dura reagent (Thermo Scientific) were used for chemi-
luminescent detection. Membranes were imaged using the
ChemiDoc XRSþ system (Bio-Rad), and bands were
quantified using ImageLab software (Bio-Rad) and nor-
malized to GAPDH content.

Centrifugal adhesion assay
In some cases, cells were pretreated by incubation in

serum-free media with blockers of adhesion for 15 min-
utes, including pan-CD44-neutralizating antibody (Her-
mes-1; Pierce), rat IgG2a control antibody (eBioscience),
and soluble RGD peptide (Ac-GCGYGRGDSPG-NH2;
Anaspec). Cells were seeded either on cross-linked HA
hydrogels with or without RGD functionality. After a
specified adhesion time, wells were completely filled with
fresh serum-free medium, and the cell culture plate was
sealed with an adhesive plate sealer. The plate was then
inverted and centrifuged for 5 minutes at 100g. Cells
remaining on the hydrogels were then fixed and stained
with 40,6-diamidino-2-phenylindole (DAPI; Invitrogen).
Automated Otsu thresholding analysis of the DAPI images
were performed on ImageJ (NIH) to determine a total
count of the number of cells on each hydrogel. Each
condition was tested in at least 3 wells, over at least 3
experiments.

Integrin characterization assay
To characterize the integrin expression pattern of control

and CD44 knockdown cells, ana/b Integrin-Mediated Cell
Adhesion Array Combo Kit (ECM532; EMD Millipore)
was used, in which antibodies specific for a particular
integrin subunit or heterodimer are immobilized onto
microtiter wells. Cells were nonenzymatically harvested by
incubation in 5 mmol/L EDTA for 20 minutes, then
incubated on microtiter plates for 2 hours in serum-free
medium. Nonadherent cells were gently washed off, and the
number of cells was quantified with a colorimetric readout
per themanufacturer's instructions. Each integrin subunit or
heterodimer antibody was assayed in duplicate wells, and the
experiment was repeated 3 times. The specificity of each
antibody was verified, and published accounts of the anti-
body clones (20, 21) used differed slightly from the kit
description; these literature-validated antibody specificities
are reported here.

Live cell time-lapse microscopy
U373-MG cells were seeded at least 4 hours before the

beginning of each time-lapse experiment. Every 15 minutes,
phase contrast images were obtained with a 10� objective.
Migration speed wasmeasured usingmanual tracking plugin
in ImageJ. For each cell, the displacement of the nucleus for
each 15 minute time interval was averaged over 6 hours to
obtain themean cell speed. At least 50 cells were analyzed per

condition, over at least three separate experiments. Persis-
tence parameter was calculated as the end-to-end path
distance divided by the total distance travelled during a
6-hour time span.

Immunofluorescence staining and cell area
measurements
Mouse anti-vinculin primary antibody (Sigma) and Alexa

Fluor 546 goat anti-mouse secondary antibody (Molecular
Probes) were used to visualize vinculin. Rat anti-CD44
primary antibody (Hermes-1; Pierce) and Alexa Fluor
647 chicken anti-rat secondary antibody (Molecular Probes)
were used to visualize CD44. Filamentous actin was stained
using Alexa Fluor 488 phalloidin (Invitrogen), and nuclei
were labeled with DAPI. Confocal images were obtained
with a swept-field confocal microscope (Prairie Technolo-
gies). Cell area was measured by manually tracing the cell
edges of live-cell phase-contrast images taken 24 hours after
seeding using ImageJ software.

Transwell invasion assay
Transwell membrane inserts with 8-mm pores, the smal-

lest pore size we found to be permissible for cell invasion
in U373-MG cells, were coated overnight with 2 mg/mL
high-molecular-weight HA from Streptococcus equi (Sig-
ma), 2 mg/mL low-molecular-weight HA (66-90 kDa;
Lifecore Biomedical), 3.7 or 9.3 mg/mL human plasma
fibronectin (Millipore), or a combination of both HA and
fibronectin. Membranes not adsorbed with fibronectin were
blocked with BSA (Sigma). Membranes were then thor-
oughly rinsed with PBS, and cells were seeded at a density of
28,000 cells/cm2 in cell medium supplemented with 1% calf
serum. In some cases, soluble HA was added to the cell
medium in both the upper and lower chambers at a con-
centration of 0.125 or 0.625mg/mL. Phase contrast micros-
copy was used to visualize cells on either side of clear
membranes. To visualize only cells on the underside of the
membrane, which had therefore invaded through pores,
GFP-expressing cells were seeded on Fluoroblokmembranes
and imaged with fluorescence microscopy. Cells were
fixed 4 hours after seeding, and cells remaining on tops of
membranes were removed by scraping with a pipette tip. To
quantify cells that had invaded through the membrane,
fluorescence images of DAPI-stained cells were thresholded,
and the total number of nuclei in each membrane was
counted with particle analysis software (ImageJ). To confirm
specificity of CD44 with adsorbed HA, control cells were
preincubated with CD44-neutralizing antibody and seeded
on HA-coated transwells. To confirm specificity of RGD-
ligating integrins with adsorbed fibronectin, cells were
preincubated with soluble RGD peptide and seeded on
fibronectin-coated transwells.

Statistical analysis
Analysis of percentage data for adhesion and invasion

assays was preceded by an arcsin transformation. For nor-
mally distributed data, statistical significance was tested
using ANOVA followed by Tukey–Kramer multiple
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comparison, and represented by bar plots with error bars
representing standard error. Non-normally distributed data
were tested by Kruskal–Wallis followed by Dunn multiple
comparison, and represented by box-and-whiskers plots.
Boxes represent 25th and 75th percentiles, whiskers repre-
sent 10th and 90th percentiles, and squares represent the
mean. All error bars represent standard error.

Results
Expression of proteins associated with HA/CD44-based
adhesion is frequently aberrant in GBM tumors
Aberrant expression of CD44 is a common feature ofmany

cancers, so we began by investigating to what extent CD44
itself, and related proteins that link it to the cytoskeleton or
ECM, are misregulated in GBM tumors (ref. 22; Fig. 1). On
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Figure 1. CD44 is frequently overexpressed in GBM tumors, and correlated with misregulation of other proteins involved in CD44-mediated pathways. A,
transcriptomic analysis of TCGA microarray data: HA synthases (HAS); hyaluronidases (HYAL); the lecticans aggrecan (ACAN), brevican (BCAN), neurocan
(NCAN), and versican (VCAN); the tenascins tenascin-C (TNC), tenascin-N (TNN), and tenascin-R (TNR); CD44; RHAMM (HMMR); the ERM proteins (EZR,
RDX, MSN), and the ankyrins (ANK). Percentiles are represented by boxes (25, 50, 75), whiskers (10, 90), and dashes (1, 99). Bottom: analysis of gene
expression correlationwithCD44. Red-blue heatmap indicates value of Pearson product–moment correlation coefficient betweenCD44 expression and each
gene, and P values indicate the statistical significance of the correlation. B, expression of proteins relevant to HA-based brain ECM and associated
downstream signaling. HA synthase proteins synthesize HA, whereas hyaluronidase enzymes degrade HA. Other ECM components that interact with HA
include lecticans, which bind to both tenascins andHA to form amesh-likematrix. CD44 andRHAMMare themain HA receptors. Intracellularly, CD44 links to
the actin cytoskeleton through the ERM family proteins and ankyrins. C, analysis of expression of genes encoding other ECM components previously
determined to be key for GBM progression: fibronectin (FN1), laminin a-5 (LAMA5), laminin a-3 (LAMA3), and vitronectin (VTN).
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the mRNA level, correlation analysis of transcriptomic
data from The Cancer Genome Atlas (TCGA) reveals that
CD44 is indeed frequently overexpressed in GBM tumors,
with a median gene expression 4.25-fold higher than that
of normal brain tissue (Fig. 1B), in agreement with many
previous smaller-scale histologic studies (8, 23–26). Fur-
ther analysis reveals that many other CD44-related genes
that are also commonly overexpressed in GBM, particu-
larly those involved in HA synthesis and degradation. The
genes HAS1, HAS2, and HAS3, which encode the HA
synthases, are aberrantly expressed. Importantly, induced
HAS2 expression has been shown to promote anchorage-
independent growth and increases tumorigenicity (27).
However, the level of HA ultimately found in the matrix is
affected both by rates of HA synthesis and several post-
transcriptional levels of regulation, so the median decrease
in HA synthase transcription is not necessarily inconsis-
tent with the elevated levels of HA in the tumor micro-
environment. For instance, the expression of hyaluro-
nidases or hyals, which are responsible for HA matrix
catabolism, are also misregulated, with hyaluronidase-1
and hyaluronidase-3 generally poorly expressed relative to
normal brain tissue. On the other hand, hyaluronidase-2 is
expressed at high levels during development but at low
levels in the adult brain (28), and its induced overexpres-
sion promotes tumor invasion in a mouse model (29).
In addition to proteins that regulate turnover of the HA

network, other proteins that physically crosslink linear HA
chains together also exhibit altered transcription patterns
(Fig. 1A). Among these include the family of lecticans and
tenascins, which, with HA, form the basic structural
components of brain ECM (30). The expression of genes
that encode proteins key to CD44-mediated intracellular
signaling are also misregulated. A notable example is the
ERM (ezrin, radixin, moesin) family of proteins, which
mediates interactions between the cytoplasmic domain of
CD44 and the actin cytoskeleton, and have known pro-
oncogenic function (31). All 3 ERM proteins are over-
expressed in tumor tissue, with expression of MSN cor-
relating strongly and positively with CD44 expression.
Interestingly, although receptor for HA-mediated motility
(RHAMM) is generally described as a proinvasive HA
receptor and has been found to be overexpressed in smaller
GBM studies (32), TCGA analysis revealed that the
median mRNA expression of the encoding gene HMMR
in tumors is only 0.53-fold the expression level of normal
brain tissues. This suggests that posttranscriptional regu-
lation may have significant effects on HMMR, or that
RHAMM overexpression may be a feature of a specific
subset of GBM tumors. Finally, since HA functions as a
key organizational scaffold for brain ECM proteins, we
examined the gene expression of other ECM proteins (Fig.
1C). Indeed, GBM tumors overexpress several proteins
that ligate integrins through RGD peptides, such as
fibronectin. Together, these findings motivated us to more
deeply investigate contributions of CD44 and integrin
binding to GBM tumor cell adhesion, migration, and
invasion.

CD44-mediated adhesion is important even when RGD
is abundant
Given the wealth of data supporting the importance of

integrins in glioma cell–ECM adhesion, we first compared
the biophysical contributions of CD44 and integrin engage-
ment to total cell-ECM adhesion.We initially chose to work
with HA hydrogels with stiffnesses similar to that of brain
tissue, which we fabricated according to our previous
description (14). Using a centrifugal detachment assay, we
measured cell adhesion strength to bare HA hydrogels and
HAhydrogels functionalizedwithRGDpeptide, bothwith a
shear modulus of 4.6 kPa.Our use of the RGD sequence was
motivated by the fact that this is the key integrin-binding
sequence in fibronectin, which is enriched in the ECM of
GBM tumors when compared with normal brain tissue.
RGD is also ubiquitously used within synthetic biomaterials
as a modular integrin-binding sequence (33–35), which
allowed us to more readily compare our findings with work
in these other materials systems. We seeded U373-MG
human glioblastoma cells transduced virally with either a
CD44-targeting shRNA (yielding 64% protein expression
knockdown; Supplementary Fig. S1A and S1B) or a non-
targeting control sequence, and allowed the cells to adhere
for 0.5 or 3 hours in serum-free culture medium. We then
measured adhesion strength by quantifying the percentage of
cells that remained adherent after exerting a detachment
force of 100 g to remove weakly adhered cells.
When cells were centrifuged 0.5 hours after initial seeding,

21% of control cells remained adherent to the bare HA
hydrogel (Fig. 2A). Incorporation of an RGD peptide into
the hydrogel yielded a modest but statistically significant
increase in cell adhesion. When the same surfaces were
presented to the CD44 knockdown cells, bare HA hydrogels
yielded negligible adhesion, whereas adhesion to HA-RGD
hydrogels was reduced twofold relative to control cells. To
confirm the molecular specificity of this effect with an
alternative approach, we incubated control cells with a
CD44-neutralizing antibody, which yielded qualitatively
identical results. We also confirmed that CD44 knockdown
altered neither integrin subtype expression nor cell viability
(Supplementary Fig. S2). Notably, and as reported previ-
ously (36), CD44 suppression increased expression of the
HA receptor RHAMM (Supplementary Fig. S1C and S1D),
indicating that the effects of depleting CD44 could not be
fully rescued by enhancement of other HA adhesion
proteins.
As expected, preincubation of both cell types with an

isotype-matched IgG antibody led to similar attachment as
the untreated control condition. Pretreatment of cells with a
soluble RGDpeptide reduced adhesion toHA-RGDbut not
to bare HA hydrogels, confirming that the cells adhered to
the cross-linkedHA through an RGD receptor-independent
mechanism. When we repeated this assay for a longer
adhesion time of 3 hours, the only conditions that resulted
in increased adhesion were those with both CD44- and
integrin-based adhesions (Fig. 2B). Together, these data
suggest that CD44 is largely responsible for adhesion on
early time scales (0.5 hours), and that these initial adhesions
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are later reinforced by integrin-mediated adhesions, if avail-
able, on longer time scales (3 hours).

CD44-mediated adhesion, spreading, and motility is
dependent on HA stiffness
It is well established that integrin-based adhesion and

signaling are strongly sensitive to ECM stiffness (37–40).
Given that GBM invasion is accompanied byHA deposition
(8) and tissue stiffening (12), and that glioma invasion
requires the ability to sense and transduce mechanical force,
we wondered whether this integrin-independent HA/
CD44-mediated adhesion might also be stiffness sensitive.
We therefore systematically varied the stiffness of our bare
HA hydrogels while keepingHA concentration constant at 5
wt%, and used the same centrifugation assay to ask whether

HA matrix stiffness altered cell adhesion (Fig. 2C and D).
Our studies revealed that on bare HA hydrogels, adhesion of
CD44-positive cells increased with stiffness, whereas adhe-
sion of CD44 knockdown cells, while still sensitive to
stiffness, was vastly reduced (Fig. 3D). Thus, CD44–HA
adhesion is intrinsically mechanosensitive to matrix stiffness
in a manner that does not require integrin ligation. Incor-
poration of RGD into the hydrogels increased adhesion at
all stiffnesses for both cell types, but still resulted in a
stiffness-dependent trend. Even with integrin ligation pres-
ent, CD44 knockdown reduced cell adhesion at all stiff-
nesses tested (Fig. 2D).
To determine whether this CD44-mediatedmechanosen-

sing had functional consequences for cell behaviors relevant
to tumor invasion, we next explored the relative roles of
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Figure 2. U373-MG cell adhesion to HA hydrogels is CD44 and stiffness dependent. A, adhesion of cells on 4.6 kPa hydrogels at short (0.5 hours) time
scales. Control cells or CD44 knockdown (k.d.) cells were allowed to attach to substrates in the absence or presence of adhesion blockers,
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CD44 and integrins in stiffness-dependent spreading and
motility on HA-based hydrogels. When allowed to adhere
over a period of 24 hours inmedium containing 10% serum,

control U373-MG cells exhibited differing morphologies
depending on stiffness and presence of RGD (Fig. 3). Cell
area analysis performed on images obtained 24 hours after
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Figure 3. U373-MG glioma cell spreading and morphology on HA-based hydrogel is stiffness dependent. A and B, cell spread area after 24 hours
of adhesion on bare HA hydrogels (A), or HA hydrogels functionalized with RGD (B). Hydrogel shear modulus is displayed on the x-axis. A, B, and
C statistical families show P < 0.05 from Dunn test for multiple comparison of nonnormally distributed data. Boxes represent 25th and 75th
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(phalloidin, green), and nuclear DNA (DAPI, blue). Bottom row depicts localization of vinculin. Scale bar, 50 mm. D, cell morphology of U87-MG
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seeding shows that, consistent with our past observations
(14), HA hydrogels functionalized with RGD induced
stiffness-dependent spreading (Fig. 3B). Surprisingly, cells
seeded on HA substrates devoid of RGD still exhibited
stiffness-dependent spreading, although the stiffness depen-
dence was less steep than that of cells onHA-RGDhydrogels
(Fig. 3A). On compliant bare HA hydrogels of 0.95 kPa, all
cells remained rounded and formed sparse multicellular
aggregates, as expected for a low-adhesion environment
(41). On stiffer 4.9 and 6.9 kPa bare HA hydrogels, cells
predominantly adhered as single cells, with CD44-positive
processes and without vinculin-positive adhesive plaques.
Cell spreading was dramatically reduced compared with cells
on RGD-functionalized surfaces (Fig. 3C). In contrast, cells
on 6.9 kPaHA-RGDhydrogels exhibited stress fibers, which
were absent in bare HA hydrogels of all stiffnesses. Similar
results were seen with U87-MG human glioblastoma
cells, albeit with expected variations in morphology between
cell lines (Fig. 3D). In both cases, addition of RGD to the
substrate resulted in localization of vinculin staining to
the tips of protrusions, whereas vinculin staining remained
diffuse on bare HA hydrogels.
Consistent with the CD44 specificity of this adhesion, cell

spreading measurements on bare HA hydrogels could not be
obtained for CD44 knockdown cells because of insufficient
adhesion to the hydrogel. With the addition of RGD to the
matrix, however, these cells exhibited similar spreading as
control cells on the same matrix (Fig. 3B). This implies that
over timescales of roughly 24 hours and with the addition of
10% serum to the culturemedium, integrin-based adhesions
are able to compensate for the lack of CD44 adhesions on 2-
dimensional (2D) cell spreading and motility.
To gain further insight into CD44-dependent cell motil-

ity, we used time lapse microscopy to record cell migration
on HA and HA-RGDmatrices 12 to 18 hours after seeding.
Cells were able to productively migrate at comparable speeds
with or without RGD functionalization. The speed of this
migration was sensitive to HA matrix stiffness, both in the
absence and presence of RGD peptide (Movie 1; Fig. 4A).
Interestingly, the speed–stiffness relationships for the 2
materials crossed over, such that bare HA hydrogels sup-
ported faster migration for the lowest stiffnesses (<1 kPa),
whereas HA-RGD hydrogels supported faster migration for
the higher stiffnesses (>4 kPa). On all but the softest
substrates tested, cells on bare HA surfaces at times exhibited
protrusions that permitted productive motility, but were
generally shorter lived than the larger lamellipodial structures
seen on cells with RGD-integrin binding (Fig. 4D). BareHA
substrates supported less directionally persistent migration
compared with hydrogels with RGD at all stiffnesses
(Fig. 4B). Thus, despite the lack of classically "spread"
2D morphology, glioma cells are still able to productively
migrate on 2D bare HA hydrogels using only CD44-based
adhesion and without integrin-based adhesion. As with
spread area and morphology, CD44 knockdown cells exhib-
ited RGD concentration-dependent migration equivalent to
that of control cells (Fig. 4C). In other words, knockdown of
CD44 does not affect cell spreading or motility when

abundant integrin-based signaling is available. To demon-
strate that these results generally apply to a range of integrin
ligands and not just RGD peptides, we functionalized HA
hydrogels with full-length fibronectin or laminin and
obtained similar cell spread area and cell speed dependence
on hydrogel stiffness (Supplementary Fig. S3).

CD44-mediated adhesion promotes glioma invasiveness
The above studies reveal that CD44 can mediate mechan-

otransductive signaling and supportmatrix adhesion and 2D
motility without giving rise to mature, vinculin-positive
focal adhesions. To test whether this mode of adhesion
might also support the highly aggressive invasion of glioma
cells through the narrow interstices in brain parenchyma, we
used a 3D transwell invasion model.
To confirm that adsorbed HA and fibronectin would still

engage CD44 and integrins in amanner similar to that of the
cross-linked HA hydrogels (as seen in Fig. 2), we first
performed a series of adhesion control experiments with
full-length fibronectin, which revealed similar ligand den-
sity–dependent spreading behavior as with RGD (Supple-
mentary Fig. S3). To confirm that CD44- and integrin-
specific adhesions are capable of inducing transwell invasion,
we next performed receptor-blocking experiments (Fig. 5A
and B). First, control cells were preincubated with CD44-
neutralizing antibody in suspension, then seeded on trans-
wellmembranes coatedwithHA and blockedwith BSA.The
resulting drop in cell invasion compared with cells not
blocked with CD44-neutralizing antibody indicated that
an appreciable component of the adhesion to adsorbed HA
could be attributed to CD44 (Fig. 5A). Second, CD44
knockdown cells were preincubated with soluble RGD
peptide, and the resulting abrogation of cell invasion on
fibronectin-coated surfaces compared with unblocked cells
indicated that the same receptors, presumably integrins,
engage both RGD and fibronectin (Fig. 5B).
To test how CD44 and integrin ligation contribute to cell

invasion when both cognate matrix elements were present,
we then coated transwell membrane inserts containing 8-mm
pores with HA, various concentrations of fibronectin, or
both HA and fibronectin. The transwell invasion model has
previously been shown to be predictive of glioma cell
invasion through tissue (42). Membranes coated only with
HA were also blocked with BSA, and membranes coated
only with BSA were used as a negative control to measure
baseline invasion withminimal receptor-mediated adhesion.
Interestingly, CD44-expressing control cells were most
invasive across membranes coated with HA with BSA, but
not fibronectin (Fig. 5C). This phenomenon is CD44-
specific, because the invasive motility of CD44 knockdown
cells across these same membranes was significantly lower
and indistinguishable from results obtained with BSA-coat-
ed membranes. Moreover, inclusion of fibronectin on HA-
coated membranes reduced invasive motility in a concen-
tration-dependent fashion; adsorption from a solution of 9.3
mg/mL fibronectin with HA reduced invasion of control
cells 2.2-fold relative to HA-coatedmembranes, whereas 3.7
mg/mL fibronectin with HA yielded intermediate levels of
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invasion. To compare the effect of soluble HA to adsorbed
HA, we added soluble HA in the media of both the top and
bottom chambers of the transwell membrane. This did not
lead to a significant increase in cell invasion compared with
the BSA control.
To gainmechanistic insight into these results, we obtained

both phase contrast images of cells adhered to either side of
each membrane and fluorescence images of GFP-expressing
cells that had invaded through the membrane to the under-
sides of Fluoroblok membranes (Fig. 5D). Consistent with
adhesion results onHA andHA-RGD gels (Fig. 2A), control
cells attached readily to membranes coated with HA and/or
fibronectin. However, control cells invaded membranes
coated in HA much more than membranes coated with
either fibronectin alone or both HA and fibronectin. This
implies that fibronectin enhanced ECM engagement and
cell spreading, but hindered invasion. When neither type of
adhesion was available (CD44 knockdown cells on
HA þ BSA matrix, or any cell population on BSA matrix),
cells rarely attached or spread, which also precluded invasion.
Only in an intermediate range of adhesion strength, inwhich
HA–CD44 adhesion was available but integrin adhesion was
not, did invasion proceed appreciably higher than baseline
levels.

Discussion
Given the biochemical and biophysical changes in brain

tissue associated with GBM progression, we were moti-
vated to investigate how glioma invasion is affected by the
nature of cell–matrix adhesions and the mechanical prop-
erties of the ECM. In addition to exposing previously
underappreciated correlations between expression of
CD44, pro-oncogenic signals, and HA-synthesizing pro-
teins, we have also found evidence that CD44–HA adhe-
sion is intrinsically mechanosensitive and occurs on a
faster time scale than integrin-based binding. Most impor-
tantly, we find that although both adhesion systems
support robust 2D motility, CD44-based adhesion is
accompanied by extension of small, short-lived processes,
whereas integrin-based adhesion is associated with broad
lamellipodia and more directionally persistent migration.
These differences extend to 3D migration through con-
stricted pores, as CD44–HA adhesion drives optimal
invasion in a transwell paradigm.
To explain our transwell results, we assembled a model

based on previously described models of glioma invasion
through constricted spaces (42) and adhesion strength on
cell migration (43). Based on these and our observations, we
propose a model in which optimal cell invasion requires a
balance between cell–matrix adhesion and turnover (Fig. 6).
In other words, we postulate that although CD44 alone can
support cell adhesion, these adhesions are less mechanically
reinforced than those formed by integrins. Consistent with
this idea, integrin ligation is accompanied by formation of
actomyosin bundles and focal adhesions (Fig. 3C and D),
which slows migration through narrow pores. This model is
supported by our measurements of adhesion, spreading, and

migration on 2D bare HA surfaces, where the finding that
CD44 can support adhesionwithout lamellipodial spreading
suggests that the latter is not required for robust adhesion or
migration. Thus, invasion through 3D pores is not directly
predictable from 2D motility alone, which is broadly con-
sistent with the recent observation that 2D protrusive
propensity predicts 3D migration speed much more accu-
rately than does 2D migration speed (44). Therefore, pre-
viously described causal relationships betweenCD44 expres-
sion, tumor size, and survival time in vivo (7)may not only be
due to CD44-mediated stimulation of canonical pro-onco-
genic signaling, but also through promotion of glioma
invasion by biophysical mechanisms.
Using transwell assays and engineered HA hydrogels, we

have demonstrated that in a range of timescales from 0.5 to
24 hours, CD44 is capable of supporting glioma cell adhe-
sion in the absence of integrin engagement. Ultimately, our
results indicate that CD44 may serve a directly proinvasive
function through the formation of short-lived matrix adhe-
sions. Previous studies support the first observation that HA
promotes glioma cell invasion, either by addition of HA into
a Matrigel coating (45), addition of soluble HA in the cell
culture medium (46), or overexpression of the HA synthases
HAS1 (47) or HAS2 (48). Consistent with these earlier
studies, we have directly shown that adsorption of HA onto
transwell membranes strongly enhances invasion in aCD44-
dependent manner. Although integrins have been extensive-
ly demonstrated to contribute to GBM tumor growth and
invasion (49, 50), our data suggest a complex interplay
between integrins and CD44 that remains to be fully
elucidated.
Remarkably, glioma cell adhesion, spreading, and 2D

motility are all sensitive to HA stiffness via CD44. We note
that cell spreading is less sensitive to stiffness when CD44,
rather than integrins, mediate adhesion; whether this is
because of differences in the receptors themselves, the signals
they transduce, or integrin–CD44 interactions remains to be
investigated. This CD44-mediated mechanosensing has
functional consequences for cell behaviors relevant to tumor
invasion. It has long been appreciated that the molecular
weight of HA can vary widely from oligomers of 4 dis-
accharides to macromolecules composed of up to 30,000
disaccharides, and these can have strikingly different effects
on the activation of downstream signals (51). Full-length
HA is anti-angiogenic, whereas oligosaccharides of HA
trigger angiogenesis (52) by a variety of mechanisms, includ-
ing activation of PKCa and Src (53). However, the bio-
physical basis of HA-molecular-weight effects remains unex-
plored. In particular, the recent discovery that exceptionally
high-molecular-weight HA strongly promotes cancer resis-
tance and longevity in the naked mole rat (54) adds further
relevance to our observations. Our data suggest amechanism
in which cells are able to differentiate HA molecular weight
in part by detecting the mechanical rigidity of CD44-bound
ligands. To date, one previous study has provided evidence
that CD44 may play a role in sensing these rigidity differ-
ences in fibroblast cells (55), and another recent study
indicates that CD44 can support or alter integrin-mediated
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mechanical signals in cardiac myocytes (56). In GBM, the
extreme overexpression of HYAL-2 (Fig. 1A), typically seen
only in developing brain, suggests that tumor cells may
resurrect the promigratory and angiogenic processes associ-
ated with development (28) by generating low molecular
weight HA fragments.
An important innovation of our study is the use of solid-

state HA substrates, which are a more physiologically
mimetic form of the high-molecular weight HA that com-
poses much of brain ECM. This also added another level of
control by enabling us to vary HA stiffness. HA must be
chemically methacrylated before crosslinking, which raises
the potential concern that this functionalization may alter
the binding affinity of HA for CD44. However, our adhe-
sion assay results (Fig. 2A and B) demonstrate that HA
methacrylation preserves CD44 binding function. Further-
more, the main binding site of CD44 for HA does not
include the hydroxyl group of the N-acetyl glucosamine
monomer, which is most likely to become methacrylated,
and this hydroxyl group points away from the N-acetyl
group that is essential for CD44 binding (57). Ultimately,
additional layers of complexity are needed to capture key

aspects of perivascular invasion, in which GBM cells infil-
trate tissue by following vascular structures.
According to the "motor-clutch" model for cellular

mechanosensing (58, 59), the comparatively weak CD44–
HA bond would shift stiffness-sensitivity to lower stiffness
values than the stronger integrin-based adhesions. This is
supported bypreviously reported binding affinities forCD44
toHA10, 50 mmol/L (57), which aremuch lower than that of
activated a5b1 for fibronectin, reported as 90 nmol/L (60).
Given that brain matrix is a relatively compliant tissue that
presumably limits cell-induced tissue stresses, it stands to
reason that under these conditions, the weaker CD44–HA
adhesion pair might serve as an important mechanotransdu-
cer. Indeed, our 2D motility data agree with this model;
addition of RGD to the HA matrix expands the range over
which cell speed is sensitive to matrix stiffness, whereas cell
speed on bareHAhydrogels plateaus at lower stiffness values.
Finally, our data also show that there is a time-dependent
cooperation between the 2 adhesion receptors, in which
CD44–HA adhesions form relatively quickly within 0.5
hours, and integrin-RGD adhesions take longer to mature.
If CD44 is not available, then over a period of 0.5 to 3 hours,
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adhesion is drastically decreased if serum is not present, but
over longer timescales of 24 hours in the presence of serum,
integrin-based adhesion is able to compensate. This lag time
between the maturation of the 2 types of adhesions may be
because of the large ensemble of proteins that are required to
form mature focal adhesions, whereas CD44 adhesions
require the association of relatively few components. The
initiation of adhesion by cell membrane–bound HA to
substrates temporally followed by integrin-based interaction
has previously been observed with chondrocytes on protein-
coated glass (61), butour results demonstrate definitively that
CD44 is responsible for this early adhesion, and that the
ECM can be engineered to modulate these interactions.
Our study raises a number of new questions in both

cellular mechanobiology and the pathophysiology of GBM:
What is the molecular basis of CD44-based mechanosen-
sing, and to what extent do these mechanisms crosstalk with
integrin-basedmechanosensing? How do these CD44-based
mechanotransductive signals ultimately influence gene
expression? And, finally, can interruption of these mechan-
otransductive signals limit tumor growth and invasion in
vivo? Orthogonal control of these 2 adhesive systems with
the use of engineered materials, systems biological tools, and
animal models will help clarify these important issues, and
potentially yield unexpected new insights into the biophys-
ical basis of tumor invasion.
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