Effects of Ionic Strength on the Morphology, Scattering, and Mechanical Response of Neurofilament-Derived Protein Brushes

Takashi J. Yokokura, Chao Duan, Erika A. Ding, Sanjay Kumar, and Rui Wang*

ABSTRACT: Protein brushes not only play a key role in the functionality of neurofilaments but also have wide applications in biomedical materials. Here, we investigate the effect of ionic strength on the morphology of protein brushes using continuous-space self-consistent field theory. A coarse-grained multiblock charged macromolecular model is developed to capture the chemical identity of amino acid sequences. For neurofilament heavy (NFH) brushes at pH 2.4, we predict three morphological regimes: swollen brushes, condensed brushes, and coexisting brushes, which consist of both a dense inner layer and a diffuse outer layer. The brush height predicted by our theory is in good agreement with the experimental data for a wide range of ionic strengths. The dramatic height decrease is a result of the electrostatic screening-induced transition from the overlapping state to the isolated state of the coexisting brushes. We also studied the evolution of the scattering and mechanical responses accompanying the morphological change. The oscillation in the reflectivity spectra characterizes the existence and microstructure of the inner condensed layer, whereas the shoulder in the force spectra signifies a swollen morphology.

INTRODUCTION

Neurofilaments (NFs) are cylindrical, self-assembled protein filaments organized axially within the axon. Brushes consisting of intrinsically disordered proteins (IDPs) protrude out from the NF cores, which play a critical role in the stability, organization, and functionality of the neuron. Mutations in the comprising proteins have also been linked to neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease, in which the instability of the NFs may contribute to neuronal cell death. Furthermore, protein-inspired brushes arouse great interest in practical applications because of their unique properties in biocompatibility, sensitivity to external stimuli, and ease of genetic modification. These advantages enable their wide application in biomedical devices and materials, such as sensors, valves, actuators, artificial cartilage, and vehicles for drug/gene delivery.

Understanding the morphology and interactions of protein and protein-inspired brushes remains a great challenge. In an earlier work, the Kumar group modified the tail domain of neurofilament heavy (NFH), which is a major component of neurofilaments, and further grafted the recombinant protein to a planar surface. They observed a dramatic height change in response to the addition of monovalent salt at a critical ionic strength: the height reduces by a factor of 3 within a narrow salt concentration range of 2 mM. This height reduction is far steeper than the ~1/3 scaling predicted by existing theories for homogeneous polyelectrolyte brushes. The height was also found to be sensitive to pH. Additionally, there is debate on the role of NFH in structurally stabilizing the axon. Whether this stability is attributed to steric effects as a result of cross-links between neighboring NFHs or induced by electrostatic repulsion is not clear. There is additional controversy on whether NFH plays a role in setting the axonal diameter based on transgenic mouse studies. Besides external stimuli, protein brush morphology also depends on the intrinsic chemical properties encoded by the amino acid sequence of the comprising proteins. By replacing serine with more charged aspartate residues, the Kumar group found that the backbone charge density of the protein has a significant effect on the height of NFH-inspired brushes. They also found that brush height is heavily influenced by protein phosphorylation.

Similar morphological behaviors have also been observed in synthetic polypelectrolyte brushes. Great efforts have been made to theoretically study the morphological behaviors of protein-inspired brushes by using polymer brush models. While the pioneering scaling theory can predict macroscopic information such as brush height, it is...
We consider a system consisting of intrinsically disordered proteins (IDPs) grafted on a planar surface, as shown in Figure 1a. The system is treated as a semi-grand canonical ensemble: the number of proteins is fixed, whereas solvent and mobile ions are connected with a bulk salt solution of ion concentration c_\pm to maintain the chemical potentials of solvent μ_i and ions μ_{\pm}. Mobile ions are taken as point charges with a valency z_\pm. The widely adopted multiblock charged macromolecular model\(^{31-33}\) is used to represent IDPs. The charged macromolecules are assumed to be Gaussian chains of N total segments with Kuhn length b. This is also a general model for synthetic polyelectrolytes and other biomacromolecules.\(^{42,44}\)

We develop a coarse-graining approach to map the chemical identity of any amino acid sequence to the multiblock charged macromolecule. Adjacent amino acids with similar charges and hydrophobicities are grouped into a block as illustrated in Figure 1b. Each block is thus a section of homopolymer with the number of residues N^b smeared backbone charge density α_i and hydrophobicity χ_i (manifested in terms of the Flory–Huggins parameter accounting for the short-range van der Waals interactions between amino acids and solvent). The equivalent number of Kuhn segments in this block is $N_i = N^b l_i/b$, where $l_i = 0.36$ nm is the average contour length of an amino acid.\(^{45,46}\) In this work, the grouping procedure is simplified by considering only the charge distribution along the amino acid sequence. Each amino acid is treated as a weak acid/base, where its charge is calculated from the dissociation constant (pK_a/pK_b) of its residue and the bulk pH through the Henderson–Hasselbalch equation.\(^{47}\) An alternative but more rigorous treatment can be achieved by explicitly considering the effect of local proton concentration on the dissociation equilibrium (see Section II.2 in the SI for the annealed model for protein charge). The blocks are determined by tracking the cumulative sum (cusum) of the charge distribution along the amino acid sequence. The section of N^b amino acids which contributes to a nearly constant slope in the cusum is grouped as a block. The charge density of this block, α_i, is directly identified by the slope.

Figure 1c illustrates the coarse-graining procedure for NFH at pH 2.4, from the initial charge of each amino acid residue to the cusum and finally to the length and charge of each block. Because amino acids are chemically similar, we assume that the hydrophobic interactions between different blocks are negligible. To determine the block hydrophobicity χ_i, residues are categorized into apolar, polar, and charged groups as used in previous work.\(^{40}\) Each group is assigned a corresponding Flory–Huggins parameter based on the values reported in the literature.\(^{48}\) The hydrophobicity χ_i of each block is then the average of its constituent amino acid Flory–Huggins parameters. The resulting sets of α_i and χ_i for NFH are presented in Table 1. The details of the NFH sequence are provided in Section I in the SI. The numerical results obtained by the theory are found not to be sensitive to the fineness of the coarse-graining model as long as the number of blocks is
Table 1. Partitions of Amino Acid Residues, Charge Density \(\alpha_n \) and Hydrophobicity \(\chi_n \) of Coarse-Grained Blocks for NFH at pH 2.4 in the Multiblock Charged Macromolecular Model

<table>
<thead>
<tr>
<th>block</th>
<th>residues</th>
<th>(\alpha_n)</th>
<th>(\chi_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[1, 28]</td>
<td>0.204967</td>
<td>1.586207</td>
</tr>
<tr>
<td>2</td>
<td>[29, 87]</td>
<td>0.027801</td>
<td>1.434483</td>
</tr>
<tr>
<td>3</td>
<td>[88, 319]</td>
<td>0.170493</td>
<td>2.113793</td>
</tr>
<tr>
<td>4</td>
<td>[320, 609]</td>
<td>0.261110</td>
<td>1.534483</td>
</tr>
<tr>
<td>5</td>
<td>[610, 647]</td>
<td>0.336030</td>
<td>0.989474</td>
</tr>
</tbody>
</table>

large enough (see the sensitivity analysis in Section III in the SI).

The semi-grand canonical partition function can be written as

\[
\Xi = \frac{1}{n_p!\nu^{n_p}} \sum_{\gamma} \sum_{n_{j=0}} \frac{e^{\gamma \sum_{i=1} n_j}}{n_{j}!\nu^{n_j}} \prod_{i=1}^{n_j} \int D[r_i]
\]

\[
= \prod_{j=1}^{n_j} \int dr_j e^{\exp(-\mathcal{H})} \int dr \delta(\hat{\phi}_j(r) + \hat{\phi}_j(r) - 1)
\]

where \(\gamma = s, \pm \) represents the solvent, cations, and anions, respectively; \(\nu_p \) is the volume of each segment in the \(n_p \) proteins; and \(\nu_i \) is the volume of each of the \(n_j \) small molecules. For simplicity, we assume \(\nu_i = \nu_j = \nu \). \(D[r_i] \) denotes the integration over all chain configurations of protein \(i \). \(\hat{\phi}_j(r) \) and \(\hat{\phi}_j(r) \) are the local instantaneous volume fraction of the protein and solvent, respectively. The \(\delta \) function at the end of eq 1 accounts for the incompressibility. The Hamiltonian \(\mathcal{H} \) is given by

\[
\mathcal{H} = \sum_{j=1}^{n_j} \frac{3}{2b^2} \int_0^\infty ds \left(\frac{dR_j(s)}{ds} \right)^2 + \frac{1}{\nu} \int dr \left(\sum_{j=1}^{n_j} R_j \right) \partial_\xi (\hat{\phi}_j(r) \hat{\phi}_j(r) + \sum_{j \neq j'} \alpha \hat{\phi}_j(r) \hat{\phi}_j(r))
\]

\[
+ \frac{1}{2} \int drr' \hat{R}_j (r) C(r, r') \hat{R}_j (r')
\]

which consists of three contributions: (1) the intrachain elastic energy of IDPs, (2) the short-range hydrophobic interactions between blocks and solvents as well as cross-interactions between blocks, and (3) the long-range Coulomb interactions between charged species. \(\hat{\phi}_j(r) \) is the instantaneous volume fraction of block \(i \), where \(\xi_j \) is the parameter between blocks \(i \) and \(j \). Here, we neglect the hydrophobic interactions between different blocks, i.e., \(\chi_j = 0 \). Furthermore, \(\hat{R}_j (r) = z_j c_j (r) - z_j c_j (r) + \sum_{j=1}^{n_j} \alpha \hat{\phi}_j(r) / \nu \) is the local charge density, where \(\hat{\phi}_j(r) \) is the instantaneous number of ions. \(C(r, r') \) is the Coulomb operator satisfying \(-\nabla \cdot (\nabla C(r, r')) = \delta(r - r') \). \(e \) is the elementary charge, and \(e_0 \) is the local dielectric constant which depends on the local composition of the system.

We follow the standard self-consistent field procedure (see Section II in the SI for a detailed derivation). First, the interacting system is decoupled into noninteracting proteins and ions in fluctuating fields by identity transformations and the Hubbard–Stratonovich transformation. Next, the functional integral over the fluctuating fields is replaced by the saddle-point approximation. The resulting self-consistent equations for block density \(\hat{n}_i \) electrostatic potential \(\psi_i \) and conjugate fields \(w_i \) and \(\nu_i \) are

\[
w_i(r) - w_i(r) = \chi(r) (1 - \hat{\phi}_i(r)) - a_i \psi_i(r)
\]

\[
= \frac{\nu}{\nu} \int dr' \frac{\left| \psi_i(r') \right|}{2} - \nu \int dr \delta(\phi_i(r) + \phi_i(r) - 1)
\]

\[
\phi_i(r) = \frac{n_p}{Q_p} \int dr q_i(r; s) q_i(r; s)
\]

\[
1 - \phi_i(r) = e^{\nu} \exp(-\psi_i(r))
\]

\[
- \nabla \cdot (\psi_i(r) \nabla \psi_i(r)) = z_j c_j (r) - z_j c_j (r) + \sum_{j=1}^{n_j} \alpha \phi_j(r)
\]

where \(\nu_2 \) is the ion concentration, where \(\nu_2 = e^{\nu} / \nu_2 \) is the fugacity of the ions determined by the bulk ion concentration \(\nu_2 \). \(Q_p = \nu^{-1} \int dr \exp(-\psi_i(r)) \) is the single-particle partition function of the solvent. \(Q_p = \nu^{-1} \int dr q_i(r; s) \) is the single-chain partition function of the protein. \(q_i(r; s) \) is the propagator that satisfies the modified diffusion equation:

\[
\frac{\partial}{\partial s} q_i(r; s) = \frac{1}{6} \nabla^2 q_i(r; s) - \nu_i(r) q_i(r; s)
\]

which sets the protein density of each block \(\phi_i \) to zero. The gradient of the electrostatic potential is also set to zero on the substrate. The free energy per unit area is

\[
F = -\sigma \ln Q_p - e^2 Q_s
\]

\[
+ \frac{1}{\nu} \int dr \left[\sum_{i=1}^{n_j} \left(\psi_i(1 - \phi_i) - w_i \phi_i \right) - \psi_i(1 - \phi_i) \right]
\]

\[
+ \int dr \left[-\frac{e_0}{2} \left| \psi_i \right|^2 + \psi_i \sum_{i=1}^{n_j} \alpha \phi_i - c_i - c_i \right]
\]
The equilibrium protein density profile, electrostatic field, and ion distribution can be obtained by solving
\[H = \frac{2}{k_B T} \int_0^\infty \ln f_P(z) \, dz \int_0^\infty \varphi_P(z) \, dz \]
(6)

Compared to the lattice constraint invoked in previous work, the differential equations are solved in the continuous space, where the numerical discretization is decoupled from the physical lattice. This improves the flexibility of the calculations. An iterative, centered finite difference scheme is used to solve the Poisson–Boltzmann equation (eq 3d), whereas the Crank–Nicolson scheme is used to solve the modified diffusion equation (eq 4). Our theory can be easily generalized to consider brushes with protein mixtures, various chain architectures, and morphologies with inhomogeneity in multiple dimensions.

RESULTS AND DISCUSSION

The theory presented above can be applied to any amino acid sequence. Here, we focus on the effect of ionic strength on a planar brush composed of modified NFH sidearms at pH 2.4. According to this bulk protein concentration, the ionic strength \(I = \frac{1}{2} \sum_i z_i c_i \) for the salt-free system is thus 4 mM. For consistency with the setup in the experiments of the Kumar group, we consider the same grafting density \(\sigma = 0.02 \) nm\(^{-2} \) and the addition of monovalent salt \(c_i = 1 \). For simplicity, the dielectric constant of the system is assumed to be uniform and set to be \(\epsilon_r = 80 \), the value of water. The temperature is set at 293 K, yielding a Bjerrum length \(l_B = e^2/4\pi k_B T\epsilon_r \) of 0.7 nm.

Morphological Response to Ionic Strength.

The morphology of NFH brushes is determined by the interplay among the hydrophobic interaction, screened electrostatic repulsion, and conformational entropy of grafted proteins. Figure 2 shows that, after properly choosing model parameters \(b \) and \(\nu \), the height response predicted by our theory is in good agreement with the experimental results reported in the literature for NFH brushes at 2.4 pH over a wide range of ionic strengths. Here, the brush heights are normalized by the value under the salt-free condition (i.e., \(H = 33 \) nm at \(I = 4 \) mM) for a better comparison to the experimental values. We note that the experimental heights measured by the Kumar group were normalized by 57 nm. The difference of the brush height in the salt-free case between experiment and theory could be attributed to the methods for quantifying the brush height. The experimental heights were determined by using atomic force microscopy, while our theoretical work uses the Gibbs dividing surface, as defined in eq 6. The height response of NFH brushes to increasing ionic strength can be divided into three regimes. At very low ionic strengths (\(I < 4 \) mM or \(\kappa_0^{-1} < 4.8 \) nm, where \(\kappa_0^{-1} \) is the Debye screening length defined as \(\kappa_0^{-1} = (8\pi n_0 k_B^2 T)\nu^{1/2} \)), the normalized height \(\tilde{H} \) decreases as \(I \) increases. The theoretical results follow the scaling of \(\tilde{H} \sim \kappa_0^{-2/3} \) as shown in the inset of Figure 2, consistent with the picture of the Alexander-de Gennes model for strongly stretched brushes. In the intermediate regime of 4 mM < \(I < 6 \) mM, the brushes collapse dramatically when a small amount of monovalent salt is added. \(\tilde{H} \) decreases by a factor of 3 within a narrow ionic strength range of 2 mM, which fully captures the dramatic height change observed in experiments. From \(I = 6 \) mM onward, the height decrease slows until the charges carried by the proteins are completely screened and the brush morphology eventually approaches that of a condensed, charge-neutral brush.

We note that there are some discrepancies between theory and experiments at very low and very high ionic strengths. This may be attributed to the simplified treatment of the dielectric environment in the current work, where the dielectric permittivities of the solvent, protein, and substrate are not distinguished. At low ionic strength, the image force due to the dielectric contrast between the substrate and solvent will repel ions further away from the surface, leading to less screening and a higher brush height. At the other limit of high ionic strength, proteins form a dense layer near the surface. Since the dielectric constants of proteins are usually much lower than that of water, the strength of the ionic screening (\(\kappa \sim (2I/\nu)^{1/2} \)) is higher than the theoretical prediction, giving rise to a lower brush height.

Figure 3 depicts the representative protein density profiles underlying the overall brush height. The corresponding ionic density profiles are provided in Section IV in the SI. At low ionic strengths (e.g., \(I = 4 \) mM), intrachain electrostatic repulsion is dominant. Each protein adopts a strongly stretched conformation which leads to a swollen brush morphology. The protein density distribution is quite diffuse with a pronounced tail stretching into the solution. The peak is attributed to the aggregation of less charged residues near the grafting point. In stark contrast, at a high ionic strength (e.g., \(I = 50 \) mM), the charges on the protein are largely screened, whereas hydrophobic attraction between residues is dominant. Each protein chain collapses and thus the whole brush adopts a condensed morphology. This is reflected by the single sharp peak in the density profile. Furthermore, at intermediate ionic strengths between the two limiting regimes, e.g., \(I = 6 \) and 10 mM, brushes exhibit characteristics of both the swollen and the
condensed morphology: there is a coexistence between a diffuse outer layer and a dense inner layer. In fact, the dramatic height change from 4 to 6 mM originates from the morphological transition from a swollen brush to a coexisting brush.

Our theory facilitates the calculation of the density distribution of each constituent protein residue, which enables us to further elucidate the microstructure of the coexisting morphology. In our multiblock charged macromolecular model, this corresponds to the density distribution of a particular block as indicated by eq 3b. Figure 4 shows the distribution of two representative blocks at $I = 6$ and 10 mM. Block 3 (Figure 4a) is the middle block less affected by the grafted chain end and is moderately charged. Block 5 (Figure 4b) is the ending block that contains the free chain end and is the most positively charged among all of the blocks. As shown in Figure 4, these two blocks exhibit remarkably different responses to changing I. Block 3 remains collapsed in the inner condensed layer. Its density distribution is largely insensitive to I, only with a slight compression at 10 mM due to the increase in electrostatic screening. On the other hand, the distribution of Block 5 is bimodal, signifying its presence both in the inner condensed layer and in the outer diffuse layer. In stark contrast to Block 3, the density distribution of Block 5 changes significantly with I. As I increases from 6 to 10 mM, a pronounced fraction of residues move from the outer diffuse layer to the inner condensed layer. The density of remaining residues in the outer layer shrinks significantly, which is reflected by a decrease of the brush height, as shown in Figure 2.

The features of the distributions of Block 3 and Block 5 illustrate that the coexisting brushes consist of two populations of chains, collapsed and stretched, as shown by the schematic in Figure 4c. The inner condensed layer is composed of all of the collapsed chains and the beginning portion of the stretched chains, whereas the outer diffuse layer includes only the remaining portion of the stretched chains. As I increases, the population of stretched chains transfers to that of the collapsed conformation. Only the stretched conformation is sensitive to the ionic strength, which becomes less extended as the screening strength increases. This underlying picture of the coexisting morphology in NFH brushes is consistent with previous theoretical and experimental results observed in synthetic polyelectrolyte brushes.37,38

The insight obtained by studying the morphology of coexisting brushes helps to explain the dramatic height change in response to ionic strength, as observed in Figure 2 and in the experiments of the Kumar group.20 At very low ionic strengths ($I < 4$ mM), all NFH proteins within the brushes take the stretched conformation, as shown in Figure 5a. At the critical ionic strength $I = 4$ mM, the screened electrostatic repulsion is comparable to the hydrophobic attraction such that individual proteins have a noticeable probability of transferring to the collapsed conformation. With an increasing I, the number of proteins in the collapsed conformation

\[\begin{align*}
\text{Figure 3. Representative distributions of the overall density of NFH proteins } & \phi_p \text{ for } I = 4, 6, 10, \text{ and } 50 \text{ mM. } z \text{ denotes the direction perpendicular to the grafting surface.} \\
\text{Figure 4. Morphology of coexisting brushes. The density distributions} & \text{ of (a) Block 3 and (b) Block 5 at } I = 6 \text{ and } 10 \text{ mM. (c) Schematic of} \\
& \text{the coexisting brush morphology with two populations of chain} \\
& \text{conformations. Block 3 and Block 5 are highlighted by red and blue,} \\
& \text{respectively, for illustration.}
\end{align*} \]
Characterization of Microstructure from Scattering and Force Spectra. As shown in the above subsection, NFH brushes exhibit nontrivial morphological behaviors which cannot be fully captured by the overall brush height obtained from common characterization tools such as AFM and spectroscopic ellipsometry. Reflectivity is a scattering technique that detects the detailed structure of buried layered interfaces by utilizing the interference of X-rays or neutrons in the sample. Like all other scattering techniques, it is challenging to obtain density profiles directly from reflectivity spectra because the scattering intensity is measured in reciprocal space.64,65 The intensity \(R \) of a reflected X-ray beam as a function of the specular part of the momentum transfer vector \(Q_z \) and the gradient of the electron density distribution \(\partial \rho_s(z)/\partial z \) is given by

\[
R(Q_z) = R_F \left| \frac{1}{\rho_{\infty}} \int dz \frac{d\rho}{dz} \exp(iQ_zz) \right|^2
\]

where \(R_F \) represents the Fresnel reflectivity of an ideal, sharp surface and \(\rho_{\infty} \) is the electron density of the bulk media far away from the substrate.66 Here, we take \(\rho_{\infty} = \rho_{\text{water}} = 0.33 \text{ e Å}^{-3} \) as the value of water. The local electron density \(\rho_s(z) \) can be calculated from the distribution of each species \(\alpha \) based on the following linear combination: \(\rho_s(z) = \sum \rho_{\alpha,s}(z) \). \(\alpha \) includes the protein, solvent, and SiO\textsubscript{2} substrate with the corresponding electron densities \(\rho_{\alpha,s} \) as 0.95, 0.33, and 2.32 e Å-3, respectively.63

The density profiles obtained from our theory can be used to investigate the evolution of the scattering intensity in response to a changing ionic strength. Figure 6 plots the reflectivity (normalized by the Fresnel reflectivity \(R_F \)) for different ionic strengths calculated using protein density profiles. The reflected intensity \(R \) (normalized by Fresnel reflectivity \(R_F \)) is nearly featureless, indicating the absence of any condensed layer. For \(I \geq 6 \text{ mM} \), \(R(Q_z) \) exhibits an oscillatory signature, which signifies the existence of a condensed layer. In this regime, it can be clearly seen from Figure 6 that the ionic strength affects both the periodicity and the amplitude of the oscillations. The increase in periodicity (denoted by \(\Delta Q_z \)) with \(I \) indicates that the condensed layer becomes thinner since the layer thickness \(d \) is characterized by the inverse of the periodicity (i.e., \(d = 2\pi/\Delta Q_z \)). On the other hand, the increase in the amplitude of the oscillations signifies condensed layers with sharper interfaces. Using reflectivity spectroscopy, similar oscillatory signatures have been observed in neutral polymer brushes in the presence of a condensed layer.64,66 Our results demonstrate the effectiveness of reflectivity spectroscopy in detecting the morphological change of protein brushes in terms of the existence and microstructure of the condensed layer.

Another approach to obtain the brush microstructure is through characterizing its mechanical response using force spectroscopy techniques such as the surface force apparatus (SFA).67,68 By tracking the free energy and the corresponding
brush morphology as a function of the separation distance, our theory enables investigation of the force spectra between two opposing substrates grafted by NFH brushes. The force per unit area is quantified by the disjoining pressure p at a given separation D between the two substrates. It is calculated from the derivative of the free energy F as $p = -(dF/dD)_{z=0}$ where $p_b = \varepsilon_b + \varepsilon_b$ is the bulk osmotic pressure from the connected reservoir. Figure 7 shows the force spectra for different ionic strengths. For all I, the force is repulsive (i.e., $p > 0$) at large separations as a result of the dominant electrostatic repulsion in this region. It is interesting to note that a signature of a shoulder appears at $75 \text{ nm} < D < 100 \text{ nm}$ for $I = 4 \text{ mM}$, which is unique compared to the spectra at other ionic strengths. This signifies a morphological change as the two swollen brushes approach each other. As D decreases, the brushes begin to overlap, which enhances the electrostatic repulsion and induces the collapse of proteins to reduce the local charge density. In this regime, the condensed proteins are sparsely distributed, and each protein collapses individually. The force is thus nearly constant, as reflected by the shoulder in the spectra. The “shoulder” signature in the force spectra can be illuminated by the end-block density distribution as shown in Figure 8. For $75 \text{ nm} < D < 100 \text{ nm}$, the plateau in the region of $15 \text{ nm} < z < 30 \text{ nm}$ is almost maintained as D decreases. There is a slight transfer of the density from the outer edge of the swollen layer to the inner condensed layer, indicating the independent collapse of the individual proteins. This signature is absent for brushes at $I \geq 6 \text{ mM}$, as the condensed layers are dense enough such that subsequent collapses of proteins cause progressively stronger energy penalties. Therefore, while reflectivity is sensitive to the condensed morphology, force spectroscopy is an effective tool for detecting the swollen morphology.

As shown in Figure 7, p drops discontinuously to a negative value at short separations for all I. This is caused by the competition between the electrostatic repulsion dominant at large D and the hydrophobic attraction between opposing brushes which dominates at small D. At a critical D, the two separated condensed layers from both brushes merge into a single condensed layer that occupies the entire space between the two substrates. As I decreases, the electrostatic repulsion is less screened, which leads to a shift of the transition to a smaller D and a deeper attractive well. It is worth noting that the brush morphology and interaction are significantly affected by the dielectric inhomogeneity of the system, particularly at small separation distances. Furthermore, at very small separations, the excluded volume effect as a result of incompressibility and chain packing will play a significant role where the pressure will rapidly increase and eventually become positive. Our work thus elucidates the nontrivial mechanical response and the corresponding morphological change between interacting brushes.

CONCLUSIONS

In this work, we applied a continuous-space self-consistent field theory to study the morphological response of a neurofilament-derived protein brush to ionic strength. A coarse-graining approach based on a multiblock charged macromolecular model has been developed to capture the chemical identity of the amino acid sequence. For varying ionic strengths, the height of NFH brushes at pH 2.4 predicted by our theory is in good agreement with the experimental data reported in the literature. NFH brushes exhibit three distinct morphological regimes: swollen brushes at low I, condensed brushes at high I, and coexisting brushes at intermediate I which contain a dense inner layer and a diffuse outer layer. Our theory enables the study of brush microstructures in terms of density distributions of constituent residues. We find that the dramatic height change observed in the experiments originates from the transition between the overlapping state and the isolated state in the outer layer of the coexisting brushes induced by electrostatic screening. The evolution of the scattering behavior and mechanical property accompanying the morphological change was also investigated. The appearance of the oscillatory signature in the reflectivity spectra characterizes the existence of the condensed inner layer. Both the periodicity and the amplitude of the oscillations increase as I increases,
signifying thinner condensed layers with sharper interfaces. Furthermore, the force spectra between two opposing swollen brushes show a signature of a shoulder due to the independent collapses of individual proteins. Our results demonstrate that reflectivity spectroscopy is sensitive to brushes with condensed layers, and force spectroscopy is an effective tool for detecting the microstructure of brushes with swollen morphology.

Although the current work focuses on NFH brushes at pH 2.4, our theory can be straightforwardly generalized to brushes with any amino acid sequence, which facilitates the study of the effect of genetic and chemical modifications such as phosphorylation. Our theory can also incorporate an explicit treatment of the local proton concentration. The current work focuses on the comparison with experimental data measured at a low pH (pH = 2.4). Under this condition of a high proton concentration, the difference between the local and bulk proton concentrations can be neglected. However, at high pH, the local proton concentration can be significantly different from the bulk value, which necessitates an explicit treatment of local proton exchange. This treatment is important to accurately capture the response of brushes to external pH stimuli, particularly for proteins consisting of weak acid/base residues. We can also apply the theory to model brushes composed of a mixture of different proteins to better represent neurofilaments. Lastly, the calculation can be performed at high dimensions to investigate brush patterning parallel to the substrate and interactions between two cylindrical brushes. Our theory provides a high-throughput computational platform that bridges the chemical structure of protein brushes and their morphological, scattering, and mechanical responses. This is important for the fundamental understanding of neurofilaments in axonal physiology, which plays a key role in the rational design of both stimuli-sensitive biomaterials and therapies for neurodegenerative diseases.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.biomac.3c01002.

NPH sequence and model parameters for amino acids; derivation of self-consistent field theory for protein brushes; sensitivity analysis of the coarse-graining procedure; and ionic density profiles near the substrate (PDF)

AUTHOR INFORMATION

Corresponding Author

Rui Wang — Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States; Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States; orcid.org/0000-0002-4058-9521; Email: ruiwang325@berkeley.edu

Authors

Takashi J. Yokokura — Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States; orcid.org/0000-0003-3733-0428

Chao Duan — Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States

Erika A. Ding — Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States

Sanjay Kumar — Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States; Department of Bioengineering, University of California, Berkeley, California 94720, United States; orcid.org/0000-0002-9996-4883

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.biomac.3c01002

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 2146752 to T.J.Y. and E.A.D. This research used the computational resource provided by the Kenneth S. Pitzer Center for Theoretical Chemistry. The work was also supported by NIH R01GM122375 to S.K.

REFERENCES

Zwitterionic Polymer Brushes. Protein Brush by Multisite Phosphorylation.

